Keyword: cancer

Photo

Immunotherapy

Toward an “ultra-personalized” therapy for melanoma

With new immunotherapy treatments for melanoma, recovery rates have risen dramatically – in some cases to around 50%. But they could be much higher. A new study led by researchers at the Weizmann Institute of Science showed, in lab dishes and animal studies, that a highly personalized approach could help the immune cells improve their ability to recognize the cancer and kill it.

Photo

Oncology

Discovering cancer cell mutations with optimized technologies

Cancer cells often have mutations in their DNA that can give scientists clues about how the cancer started or which treatment may be most effective. Finding these mutations can be difficult, but a new method may offer more complete, comprehensive results. A team of researchers has developed a new framework that can combine three existing methods of finding these large mutations - or structural…

Photo

Tumor research

microRNAs predict recurrence risk of head and neck cancer

A new method predicts the course of HPV-negative head and neck cancer after radiation chemotherapy. According to a recent article in the journal ‘Clinical Cancer Research’, five microRNAs (miRNAs) can provide the decisive data. The work was conducted at the Helmholtz Zentrum München and the University Hospital of the Ludwig-Maximilians-Universität München (LMU) in close collaboration with…

Photo

Reinforced learning

AI masters tightrope walk of cancer treatment dosage

Using a new approach called 'reinforced learning', researchers have taught an artificial intelligence (AI) to responsibly choose the right amount of chemo- and radiotherapy for glioblastoma patients. The technique, which is insprired by behavioural psychology, has given the AI the ability to master the tightrope walk between effective tumor shrinkage and the medications' severe side effects.

Photo

Personalised drug treatment

AI approach to help myeloma patients

A multidisciplinary team of researchers from the National University of Singapore (NUS) has developed an artificial intelligence (AI) technology platform that could potentially change the way drug combinations are being designed, hence enabling doctors to determine the most effective drug combination for a patient quickly. Applying the platform towards drug resistant multiple myeloma, a type of…

Photo

Gastroenterology

High-fat diet can cause pancreatic cancer – but there's hope

A high-fat diet may promote the growth of pancreatic cancer independent of obesity because of the interaction between dietary fat and cholecystokinin (CCK), a digestive hormone. In addition, blocking CCK may help prevent the spread of pancreatic tumors to other areas of the body (metastases). The new findings are published ahead of print in the American Journal of Physiology—Gastrointestinal…

Photo

Switching sides

How cancer cells 'brainwash' their foes

It doesn’t often happen that army generals switch sides in the middle of a war, but when cancer is attacking, it may cause even a gene that acts as the body’s master defender to change allegiance. Researchers at the Weizmann Institute of Science have discovered that this gene’s betrayal can occur in more ways than previously appreciated – and might even return the renegade cells to their…

Photo

Tumor research

Growing brain cancer in a dish

Austrian researchers have accomplished an astounding feat: They created organoids that mimic the onset of brain cancer. This method not only sheds light on the complex biology of human brain tumors but could also pave the way for new medical applications.

Photo

Acute myeloid leukaemia

Researchers draw AML ‘family trees’ in patients treated with enasidenib

For the first time, a team of international researchers have mapped the family trees of cancer cells in acute myeloid leukaemia (AML) to understand how this blood cancer responds to a new drug, enasidenib. The work also explains what happens when a patient stops responding to the treatment, providing important clues about how to combine enasidenib with other anti-cancer drugs to produce…

Photo

Brain cancer

Typical mutation in cancer cells stifles immune response

The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer. In addition, it can impair the immune system. It thus blocks the body’s immune response in the battle against the mutant molecule and also impedes immunotherapy against brain cancer. This finding opens new insights into cancer development and progression and it also suggests that rethinking antitumor…

Photo

Gaining ground

MRI advances approach the realm of precision medicine

MRI has developed rapidly over the past decade in Poland, where clinicians are combining MRI with PET and CT to highlight tumour growth or regression and perfusion. ‘The fact that MRI offers new software and programmes means we can diagnose pathologies more precisely and make a diagnosis faster than a few years ago,’ explained Poland’s national advisor on radiology and diagnostic imaging…

Photo

Health IT

Computer algorithm maps cancer resistance to drugs

New methods of studying the evolution of treatment resistance in head and neck cancer are being developed by researchers at the Johns Hopkins Kimmel Cancer Center. The scientists wanted to examine how cancers acquire resistance to treatment over time and whether those changes could be modeled computationally to determine patient-specific timelines of resistance.

Photo

Promising research

Could senescence be the key to stopping cancer?

Canadian researchers have found a promising way to stop tumour cells from multiplying. In disrupting the composition of ribosomes, the team from Université de Montréal (UdeM) discovered a direct molecular mechanism to stop cancer cells from proliferating, which is called senescence. Their results have been published in Nature Cell Biology. 
“Ribosomes are complex machines composed of both…

Photo

Oncology

Breaking through a tumor's defenses

Babraham Institute researchers have shown that some tumours use not one but two levels of protection against the immune system. Knocking out one level boosted the protective effects of the second and vice versa. The research demonstrates that a two-pronged approach targeting both cell types simultaneously may offer a promising route for the development of new cancer immunotherapies.

279 show more articles