Deep learning

Photo

Personalizing treatment

AI can help improve precision radiotherapy

The Netherlands Cancer Institute, University of Amsterdam (UvA), and Elekta will collaborate on the development of new AI strategies for the further improvement of precision radiotherapy. This…

Photo

Panic prevention

Drone helps elderly escape from burning nursing homes

A student team at Eindhoven University of Technology (TU/e) has introduced an interactive drone that guides elderly people to the exit during a fire in a nursing home, even before the fire brigade…

Photo

Deep learning vs Aids

AI app could help diagnose HIV more accurately

Pioneering technology developed by University College London (UCL) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results,…

Photo

WHO global report

The six guiding principles for AI in healthcare

Artificial Intelligence (AI) holds great promise for improving the delivery of healthcare and medicine worldwide, but only if ethics and human rights are put at the heart of its design, deployment,…

Photo

Workflow optimisation

The potential of AI in breast imaging efficiency

The contribution of Artificial intelligence (AI) has great potential in breast imaging efficiency, Professor Linda Moy MD told attendees at the 2021 Society of Breast Imaging/American College of…

Photo

Redesign & refresh

Canon Medical updates Aplio ultrasound systems

Canon Medical announced the commercial launch of the Aplio i-series / Prism Edition, a complete redesign of its premium ultrasound series. In addition, Aplio a-series, Canon Medical’s…

Photo

AI-assisted analysis

Prediciting viral infections with microscopy & deep learning

When viruses infect cells, changes in the cell nucleus occur, and these can be observed through fluorescence microscopy. Using fluoresence images from live cells, researchers at the University of Zurich have trained an artificial neural network to reliably recognize cells that are infected by adenoviruses or herpes viruses. The procedure also identifies severe acute infections at an early stage.

Photo

Combining common risk factors

Deep learning enables dual screening for cancer and CVD

Heart disease and cancer are the leading causes of death in the United States, and it’s increasingly understood that they share common risk factors, including tobacco use, diet, blood pressure, and obesity. Thus, a diagnostic tool that could screen for cardiovascular disease while a patient is already being screened for cancer has the potential to expedite a diagnosis, accelerate treatment, and…

Photo

Robotic navigation

Helping robots find their way in crowded emergency rooms

Computer scientists at the University of California San Diego have developed a more accurate navigation system that will allow robots to better negotiate busy clinical environments in general and emergency departments more specifically. The researchers have also developed a dataset of open source videos to help train robotic navigation systems in the future. The team, led by Professor Laurel Riek…

Photo

Incidental findings identification

AI system for brain MRIs could boost workflows

An artificial intelligence (AI)-driven system that automatically combs through brain MRIs for abnormalities could speed care to those who need it most, according to a new study. “There are an increasing number of MRIs that are performed, not only in the hospital but also for outpatients, so there is a real need to improve radiology workflow,” said study co-lead author Romane Gauriau, PhD,…

Photo

Outcome prediction

Deep learning to maximize lifespan after liver transplant

Researchers from the Canadian University Healh Network (UHN) have developed and validated a deep learning model to predict a patient's long-term outcome after receiving a liver transplant. First of its kind in the field of Transplantation, this model is the result of a collaboration between the Ajmera Transplant Centre and Peter Munk Cardiac Centre (PMCC). The study, published in Lancet Digital…

Photo

At ECR 2021

AI experts tackle organ segmentation and health economics

AI is revamping workflows and experts showed how radiologists can integrate it into their department to improve daily practice and healthcare at ECR. The panel also discussed the health economics side of AI to help radiologists define which products make more economic sense for their department. The session tackled automated organ segmentation, an interesting application for AI in radiology.

Photo

Survival prediction

Deep learning may lead to better lung cancer treatments

Doctors and healthcare workers may one day use a machine learning model, called deep learning, to guide their treatment decisions for lung cancer patients, according to a team of Penn State Great Valley researchers. In a study, the researchers report that they developed a deep learning model that, in certain conditions, was more than 71% accurate in predicting survival expectancy of lung cancer…

Photo

AI use in clinical diagnosis

Deep learning tool predicts tumour expression from whole slide images

A deep learning model to predict RNA-Seq expression of tumours from whole slide images was among the industry innovations outlined at the 7th Digital Pathology and AI Congress for Europe. Created by French-American start-up Owkin, the detail of how the company’s HE2RNA model provides virtual spatialization of gene expression was detailed to online delegates by senior translational scientist…

Photo

AI does not discriminate

Removing bias from mammography screening with deep learning

AI can help tackle inequities and bias in healthcare but it also brings partiality issues of its own, experts explained in a Hot Topic session entitled "Artificial Intelligence and Implications for Health Equity: Will AI Improve Equity or Increase Disparities?" at RSNA. Two leading researchers showcased how deep learning may help bring back all the patients into screening mammography…

Photo

Clinical decision support

AI deep learning of PET/CT images to support NSCLC treatment

A software tool to predict the most effective therapy for non-small cell lung cancer (NSCLC) developed by applying deep learning artificial intelligence (AI) to positron emission tomography/computed tomography (PET/CT) images has been developed by researchers at H. Lee Moffitt Cancer Center and Research Institute in Tampa, Florida. The tool is designed to provide a noninvasive, accurate method to…

Photo

AI-assisted MRI segmentation

Deep learning boost for prostate cancer workflow

Prostate cancer radiotherapy treatments guided by MRI are increasingly being explored to help improve patient outcomes and reduce toxicities after treatment. However, this development is being held back as the MRI approach is labour intensive and requires daily adaptive treatment planning, placing significant additional demands on clinician time and oncology services. To address this, a team of…

Photo

Algorithms must meet quality criteria

Deep Learning in breast cancer detection

A French expert in breast imaging looked at the latest Deep Learning (DL) applications in her field, screening their strengths and weaknesses in improving breast cancer detection. It is really important to understand which types of data sets need to be checked when evaluating an AI model for image interpretation, according to Isabelle Thomassin-Naggara, Professor of Radiology at Sorbonne…

Photo

Improving the role of radiology

Value-based healthcare: AI reveals the bigger picture

Value-based healthcare is gaining momentum and radiologists must increasingly show their contribution in improving patient care. Artificial intelligence (AI) can help them to do so and brings a series of new opportunities, according to Charles E Kahn, Professor and Vice Chairman of Radiology at the University of Pennsylvania, speaking at a meeting in Madrid in January. AI can do a lot to improve…

56 show more articles
Subscribe to Newsletter