Keyword: nanotechnology

Photo

Joint disease

Nanotechnology detects molecular biomarker for osteoarthritis

For the first time, scientists at Wake Forest Baptist Medical Center have been able to measure a specific molecule indicative of osteoarthritis and a number of other inflammatory diseases using a newly developed technology. This preclinical study used a solid-state nanopore sensor as a tool for the analysis of hyaluronic acid (HA). HA is a naturally occurring molecule that is involved in tissue…

Photo

Nanoscale visualization

Laser light shows X-ray holographic images of viruses

Holography, like photography, is a way to record the world around us. Both use light to make recordings, but instead of two-dimensional photos, holograms reproduce three-dimensional shapes. The shape is inferred from the patterns that form after light ricochets off an object and interferes with another light wave that serves as a reference. When created with X-ray light, holography can be an…

Photo

Histology in 3D

New staining method enables Nano-CT imaging of tissue samples

To date, examining patient tissue samples has meant cutting them into thin slices for histological analysis. This might now be set to change – thanks to a new staining method devised by an interdisciplinary team from the Technical University of Munich (TUM). This allows specialists to investigate three-dimensional tissue samples using the Nano-CT system also recently developed at TUM. Tissue…

Photo

Nano-scale diagnostics

Researchers are developing a ‘Lab-on-skin’ to monitor biomarkers

Move over, lab-on-a-chip and lab-on-paper. There’s a new diagnostic technology in research labs that is gaining credibility. It is called lab-on-skin technology and some scientists are quite excited about how it might be used for a variety of clinical purposes. A recent story published in ACS Nano titled, “Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health…

Photo

Infection research

Designer nanoparticles destroy a broad array of viruses

Viral infections kill millions of people worldwide every year, but currently available antiviral drugs are limited in that they mostly act against one or a small handful of related viruses. A few broad-spectrum drugs that prevent viral entry into healthy cells exist, but they usually need to be taken continuously to prevent infection, and resistance through viral mutation is a serious risk. Now,…

Photo

Nanovaccine

The flu shot of the future might look like this

For many of us, a flu shot is a fall routine. Roll up a sleeve, take a needle to the upper arm and hope this year’s vaccine matches whichever viruses circulate through the winter. The most common method to make that vaccine is now more than 70 years old. It requires growing viruses in special, pathogen-free chicken eggs. It’s not a quick and easy manufacturing process. And, at best, it…

Photo

Light it up

Faster, more accurate cancer detection using nanoparticles

Using light-emitting nanoparticles, Rutgers University-New Brunswick scientists have invented a highly effective method to detect tiny tumors and track their spread, potentially leading to earlier cancer detection and more precise treatment. The technology could improve patient cure rates and survival times. “We’ve always had this dream that we can track the progression of cancer in real…

Photo

Innovative approach

New “Swiss Army Knife” nanovaccine to battle tumors

Scientists are using their increasing knowledge of the complex interaction between cancer and the immune system to engineer increasingly potent anti-cancer vaccines. Now researchers at the National Institute of Biomedical Imaging and Bioengineering (NIBIB) have developed a synergistic nanovaccine packing DNA and RNA sequences that modulate the immune response, along with anti-tumor antigens, into…

Photo

Golden helpers

Nanoparticles could allow for faster, better medicine

Gold nanoparticles could help make drugs act more quickly and effectively, according to new research conducted at Binghamton University, State University of New York. Nanoparticles are microscopic particles that are bigger than atoms but smaller than what the eye can see. They are unique for their large surface area-to-volume ratio and their fairly ubiquitous nature. A new study, co-conducted by…

Photo

Innovation

Novel Nano-CT magnifies tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of…

Photo

Neurotransmissions

Nanosensors uncloak the mysteries of brain chemistry

Nanosensors are incredible information-gathering tools for myriad applications, including molecular targets such as the brain. Neurotransmitter molecules govern brain function through chemistry found deep within the brain, so University of California, Berkeley researchers are developing nanosensors to gain a better understanding of exactly how this all plays out. During the AVS 64th…

Photo

Oncology

Nanoparticle creates ‘wave of destruction’ in cancer cells

Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer. Now, the ultrasmall particles – developed more than a dozen years ago by Ulrich Wiesner, the Spencer T. Olin Professor of Engineering at Cornell University – have shown they can do something even better: kill cancer cells without attaching a cytotoxic drug.

Photo

Therapy

Nanoparticle injections may be future of osteoarthritis treatment

Osteoarthritis is a debilitating condition that affects at least 27 million people in the United States, and at least 12 percent of osteoarthritis cases stem from earlier injuries. Over-the-counter painkillers, such as anti-inflammatory drugs, help reduce pain but do not stop unrelenting cartilage destruction. Consequently, pain related to the condition only gets worse.

Photo

Overcoming multidrug-resistant cancer with smart nanoparticles

Multidrug resistance (MDR) is the mechanism by which many cancers develop resistance to chemotherapy drugs, resulting in minimal cell death and the expansion of drug-resistant tumors. To address the problem of resistance, researchers at the National Institute of Biomedical Imaging and Bioengineering (NIBIB) at the National Institutes of Health (NIH) have developed nanoparticles that…

Photo

More light on cancer

The group of Russian and French researchers, with the participation of scientists from the Lomonosov Moscow State University, has succeeded to synthesize nanoparticles of ultrapure silicon, which exhibited the property of efficient photoluminescence, i.e., secondary light emission after photoexcitation. These particles were able to easily penetrate into cancer cells and it allowed to use them as…

15 show more articles