
News • Tissue regeneration
Repairing intestinal damage with 3D cell transplants
Researchers from Tokyo Medical and Dental University (TMDU) develop a protocol to transplant 3D cellular structures that could regenerate damaged intestine.
Researchers from Tokyo Medical and Dental University (TMDU) develop a protocol to transplant 3D cellular structures that could regenerate damaged intestine.
Researchers have developed a combination of materials that can morph into various shapes before hardening. The material is initially soft, but later hardens through a bone development process that uses the same materials found in the skeleton.
A new biopsy tool will enable scientists and clinicians to simultaneously profile many biomarkers in cells and tissues.
A tiny ‘pop-up’ sensor monitors the electrical activity inside heart cells. The device could provide new insights into cardiac diseases, including myocardial infarction and arrhythmias.
The Coronavirus SARS-CoV-2 infects the kidneys and contributes to tissue scarring, as shown by researchers from Germany and the Netherlands.
The joint research team of Prof. Hongsoo Choi (DGIST) & Prof. Sung Won Kim (Seoul St. Mary’s Hospital), developed an hNTSC-based microrobot for minimally invasive delivery into the brain tissue via the intranasal pathway.
After infection with SARS-CoV-2, where does the immune system store the memory to provide long-term protection against reinfection? Though numerous studies have examined blood to track immune responses to SARS-CoV-2, a new study of Covid survivors shows that the memory of the infection is primarily stored in T and B cells within the lung and the lymph nodes surrounding the lung.
Many of the organ systems found in animals exhibit highly complex structures, which are essential for their various functions. How such structures develop during embryonic development is a central question in biology. Physicists led by Erwin Frey (Professor of Statistical and Biological Physics at LMU Munich) and Andreas Bausch (Professor of Cellular Biophysics at the Technical University of…
A multidisciplinary team of scientists based at the Universidad de Valladolid and the Centro Nacional de Investigaciones Cardiovasculares (CNIC) has developed a highly efficient method for identifying the 3-dimensional features of the scar tissue formed after a myocardial infarction. The study was carried out in partnership with scientists and clinicians at Hospital Clínico San Carlos, Hospital…
Imaging company Lumito has secured a European patent for an instrument and staining reagents based on UCNPs (up-converting nanoparticles) for imaging in scattering materials, such as human tissue. The instrument is intended for use in tissue diagnostics, to provide pathologists visual depictions of tissue samples as an input for making diagnosis. The technology is patented across three global…
Using lab-created tissue to heal or replace damaged organs is one of the great visions for the future of medicine. Synthetic materials could be suitable as scaffolding for tissue because, unlike natural tissues, they remain stable in the organism long enough for the body to form new natural structures. A fundamental requirement for functional tissue is that blood vessels must be able to grow in…
Molecular pathology company Xyall BV launches its Tissector High Throughput (HT) system for precision diagnostics. This is a world first – enabling high volume, molecular diagnostic laboratories to capitalize commercially on the company’s automated tissue dissection technology.
A researcher at the Technical University of Denmark (DTU) has developed a mathematical model for use in automated image analysis of tissue samples. The model provides the possibility for better and more similar cancer prognosis and treatment.
We recently had the pleasure of interviewing Dr. Peter Riegman from Erasmus University. Dr. Riegman is a Molecular Biologist and head of the Erasmus MC Tissue Bank. As an early adopter of digital pathology, Dr. Riegman purchased his first Hamamatsu Photonics whole slide scanner in 2005. It was a NanoZoomer HT, one of Hamamatsu’s very first production units, and it is still in daily use at…
La Trobe University researchers are the first in the world to characterize precisely how Covid-19 attacks lung tissues — an important step in preventing long-term damage.
Specialist biorepositories are helping advance personalised medicine by supporting the availability of human tissue for research using digital pathology techniques. The pivotal role of the Glasgow Tissue Research Facility (GTRF) in making tissue available to shape new therapies and treatments was outlined in a presentation to the online “Transforming Digital Pathology – Integrating AI to Move…
Due to their tissue-like mechanical properties, hydrogels are being increasingly used for biomedical applications; a well-known example are soft contact lenses. These gel-like polymers consist of 90 percent water, are elastic and particularly biocompatible. Hydrogels that are also electrically conductive allow additional fields of application, for example in the transmission of electrical signals…
A radiotherapy technique which ‘paints’ tumours by targeting them precisely, and avoiding healthy tissue, has been devised in research led by the University of Strathclyde. Researchers used a magnetic lens to focus a Very High Electron Energy (VHEE) beam to a zone of a few millimetres. Concentrating the radiation into a small volume of high dose will enable it to be rapidly scanned across a…
Scientists have used a technique to grow bile duct organoids – often referred to as ‘mini-organs’ – in the lab and shown that these can be used to repair damaged human livers. This is the first time that the technique has been used on human organs. The research paves the way for cell therapies to treat liver disease – in other words, growing ‘mini-bile ducts’ in the lab as…
Research into 3D bioprinting has grown rapidly in recent years as scientists seek to re-create the structure and function of complex biological systems from human tissues to entire organs. The most popular 3D printing approach uses a solution of biological material or bioink that is loaded into a syringe pump extruder and deposited in a layer-by-layer fashion to build the 3D object. Gravity,…
A new generation of tissue microarrays are delivering more efficient and time-effective solutions to answering complex clinical and scientific questions. Sitting at the core of this new approach is digital pathology, allowing specific and targeted analysis of small areas of tissue.
Researchers at the Francis Crick Institute and the University of Western Australia have developed a new imaging method to see where antibiotics have reached bacteria within tissues. The method could be used to help develop more effective antibiotic treatments, reducing the risk of antibiotic resistance.
Specialists from the Department of Fundamental Medicine of Far Eastern Federal University (FEFU) with Russian and Japanese colleagues have probed into mechanisms of COVID-19 inside-the-body distribution linked to erythrocytes damaging.
New techniques of infrared-based technology are showing strong potential for cost-effective tissue analysis. Peter Gardner, Professor of Analytical and Biomedical Spectroscopy at the University of Manchester, outlined how hyperspectral imaging coupled with sophisticated computer algorithms can identify and grade cancerous tissue, as well as offer an indication of prognosis. The technique, he…
Scientists combined induced pluripotent stem cells (iPSC) and their deep knowledge in the bioengineering of human organoids to for the first time bioengineer the human brain at the macroscale level with comprehensive network function