Keyword: stem cells

Photo

Cardiac regeneration potential

Cell combination heals damaged hearts

Researchers have discovered a unique combination of cells grown from stem cells that could prove pivotal in helping a heart regenerate after a patient has suffered a myocardial infarction. The University of Cambridge research team found that transplanting an area of damaged tissue with a combination of heart muscle cells and supportive cells, similar to those that cover the outside of the heart,…

Photo

Stem cell regeneration

Drug accelerates recovery after chemo, radiation

A drug developed by US physician-scientists and chemists speeds up the regeneration of mouse and human blood stem cells after exposure to radiation. If the results can be replicated in humans, the compound could help people recover quicker from chemotherapy, radiation and bone marrow transplants. The study, published in Nature Communications, also sheds light on the basic biology behind blood…

Photo

Cellular interactions

Repairing aged tissue by messing with the neighbors

Researchers at the University of Helsinki have discovered how regenerative capacity of intestinal epithelium declines when we age. Targeting of an enzyme that inhibits stem cell maintaining signaling rejuvenates the regenerative potential of an aged intestine. This finding may open ways to alleviate age-related gastrointestinal problems, reduce side-effects of cancer treatments, and reduce…

Photo

Oncology

Killing the unkillable cancer cells

We all know someone affected by the battle against cancer. And we know that treatments can be quite efficient at shrinking the tumor but too often, they can’t kill all the cells, and so it may come back. With some aggressive types of cancer, the problem is so great that there is very little that can be done for the patients.

Photo

New discovery

Cancer drugs promote stem cell properties of colorectal cancer

Scientists from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Mannheim University Medical Center have now discovered that a certain group of cancer drugs (MEK Inhibitors) activates the cancer-promoting Wnt signalling pathway in colorectal cancer cells. This can lead to the accumulation of tumor cells with stem cell characteristics that are resistant to many…

Photo

Induced pluripotent stem (iPS)

Researchers find way to generate stem cells more efficiently

Induced pluripotent stem (iPS) cells are among the most important tools in modern biomedical research, leading to new and promising possibilities in precision medicine. To create them requires transforming a cell of one type, such as skin, into something of a blank slate, so it has the potential to become virtually any other kind of cell in the body, useful for regenerative therapies for…

Photo

Hope for diabetics

Insulin-producing cells grown in lab

UC San Francisco researchers have for the first time transformed human stem cells into mature insulin-producing cells, a major breakthrough in the effort to develop a cure for type 1 (T1) diabetes. Replacing these cells, which are lost in patients with T1 diabetes, has long been a dream of regenerative medicine, but until now scientists had not been able to figure out how to produce cells in a…

Photo

Cancer stem-like cells

Important signaling pathway in breast cancer revealed

In breast cancer, one of the most common cancers in women, tumors contain a small amount of so-called cancer stem-like cells (CSCs). Being able to eliminate breast-cancer stem-like cells in a targeted way is essential for developing successful therapies — conventional treatments, such as chemotherapy or radiotherapy followed by drug intake, do not target CSCs. A better understanding of the…

Photo

DMD & rhabdomyosarcoma

Duchenne muscular dystrophy: Muscle stem cells can drive cancer

People with Duchenne muscular dystrophy (DMD) can develop an otherwise-rare muscle cancer, called rhabdomyosarcoma, due to the muscle cells’ continuous work to rebuild the damaged tissue. However, little is known about how the cancer arises, hindering development of a treatment or test that could predict cancer risk. Now, scientists from Sanford Burnham Prebys Medical Discovery Institute (SBP)…

Photo

Regenerative medicine

Blood cells can be directly reprogrammed into neural stem cells

Scientists from the German Cancer Research Center (DKFZ) and the stem cell institute HI-STEM* have succeeded for the first time in directly reprogramming human blood cells into a previously unknown type of neural stem cell. These induced stem cells are similar to those that occur during the early embryonic development of the central nervous system. They can be modified and multiplied indefinitely…

Photo

Stem cell research

Brain confetti - why our sense of smell declines when we get old

As mammals age, their sense of smell deteriorates. In a study published in the journal ‘Cell Reports’, an interdisciplinary research team at Helmholtz Zentrum München and the University Medical Centre Mainz investigated why this is the case. For their study, the researchers tracked the development of stem cells in the brains of mice using what are known as confetti reporters. They then…

Photo

Myelodysplastic syndrome

Genetic testing helps predict disease recurrence

A DNA-based analysis of blood cells soon after a stem cell transplant can predict likelihood of disease recurrence in patients with myelodysplastic syndrome (MDS), a group of cancerous disorders characterized by dysfunctional blood cells. Such a practice could help doctors identify patients at high risk of disease recurrence early after a transplant and help guide treatment decisions.

Photo

bioengineering

Advancing technique for of personalied bone grafts

Scientists have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique allows researchers to combine segments of bone engineered from stem cells to create large scale, personalized grafts that will enhance treatment for those suffering from bone disease or injury through regenerative medicine.

Photo

Hematopoietic Stem Cells

What keeps our blood in balance

Blood is the juice of life, as while circulating through the body it delivers vital substances such as oxygen and nutrients to cells and tissues. Chemotherapy, radiotherapy and blood loss in general impoverish the system. A special kind of cells in the bone marrow, called hematopoietic stem cells (HSCs) is able to replenish the impoverished system by giving rise not only to red blood cells, but…

Photo

Research support

Stem cell therapy for traumatic injury on the horizon

The University of Texas Health Science Center at Houston (UTHealth) has received funding through a public/private partnership for the first-ever clinical trial investigating a stem cell therapy for early treatment and prevention of complications after severe traumatic injury. The proposed Phase 2 trial is underwritten with $2 million from the Medical Technology Consortium (MTEC) and $1.5 million…

Photo

Hypoplastic left heart syndrome (HLHS)

Stem cells might be the key to treating rare cardiac defect

Children's Hospital Los Angeles is announcing participation in the first-ever clinical trial using stem cells from umbilical cord blood to delay or even prevent heart failure in children born with a rare congenital heart defect that leaves them with half a heart. The Phase I study is part of a multi-center collaboration dedicated to employing innovative therapies to improve outcomes for children…

Photo

Efferocytosis

Can stem cell exosome therapy reduce fatal heart disease in diabetes?

Macrophage cells routinely remove dead or dying cells to maintain the body homeostasis. Such removal becomes crucial after serious injury, especially the repair of dead heart muscle after a heart attack. University of Alabama at Birmingham researchers have preliminary data, with cultured cells or diabetic hearts, that diabetes impairs this removal of dead heart-muscle cells. They believe this…

Photo

Neurogenesis

These genetic ‘switches’ determine our brain development

UCLA researchers have developed the first map of gene regulation in human neurogenesis, the process by which neural stem cells turn into brain cells and the cerebral cortex expands in size. The scientists identified factors that govern the growth of our brains and, in some cases, set the stage for several brain disorders that appear later in life. The human brain differs from that of mice and…

Photo

Milestone

Researcher grow hairy skin in a dish

Researchers at Indiana University School of Medicine have successfully developed a method to grow hairy skin from mouse pluripotent stem cells - a discovery that could lead to new approaches to model disease and new therapies for the treatment of skin disorders and cancers.

Photo

Duchenne

Researchers create skeletal muscle from stem cells

Scientists from the University of California, Los Angeles (UCLA) have developed a new strategy to efficiently isolate, mature and transplant skeletal muscle cells created from human pluripotent stem cells, which can produce all cell types of the body. The findings are a major step towards developing a stem cell replacement therapy for muscle diseases including Duchenne Muscular Dystrophy, which…

Photo

Deafness reversal

Inner ear stem cells may someday restore hearing

Want to restore hearing by injecting stem cells into the inner ear? Well, that can be a double-edged sword. Inner ear stem cells can be converted to auditory neurons that could reverse deafness, but the process can also make those cells divide too quickly, posing a cancer risk, according to a study led by Rutgers University–New Brunswick scientists. The encouraging news is that turning stem…

70 show more articles