Machine learning

Photo

Article • Need for diversity in training datasets

Artificial intelligence in healthcare: not always fair

Machine learning and AI are playing an increasingly important role in medicine and healthcare, and not just since ChatGPT. This is especially true in data-intensive specialties such as radiology, pathology or intensive care. The quality of diagnostics and decision-making via AI, however, does not only depend on a sophisticated algorithm but – crucially – on the quality of the training data.

Photo

Article • AI provides prognostic information

Next-generation deep learning models predict cancer survival

Deaths from cancer are currently estimated at 10 million each year worldwide. Conventional cancer staging systems aim to categorize patients into different groups with distinct outcomes. ‘However, even within a specific stage, there is often substantial variation in patient outcomes,’ Markus Plass, academic researcher from the Medical University of Graz, Austria, explained to Healthcare in…

Photo

Malignant tumour management

’Our machine learning model achieved 88.9% accuracy in predicting the sarcoma-specific survival rate’

Clinical management of soft tissue sarcoma is particularly challenging. Dr Sebastian Foersch, researcher at the Institute of Pathology at the University Medical Center in Mainz, Germany, has used a deep learning model for diagnosis and prognosis prediction of soft tissue sarcoma using conventional histopathology slides.

113 show more articles
Subscribe to Newsletter