AI to predict multiple sclerosis, detect contaminated lab samples

Image source: Adobe Stock/Graf Vishenka

News • Presented at AACC 2023

AI to predict multiple sclerosis, detect contaminated lab samples

A new artificial intelligence model can predict people’s risk of multiple sclerosis years before diagnosis, potentially enabling quicker treatment, according to research revealed at the 2023 AACC Annual Scientific Meeting & Clinical Lab Expo. Another breaking study demonstrates how machine learning can help detect lab samples contaminated with intravenous fluids—a finding that could reduce lab errors that delay diagnosis and raise healthcare costs.

Taken together, the results highlight key advances in the use of artificial intelligence and machine learning to improve patient care. 

AI model harnesses patient data to predict MS risk

Multiple sclerosis is a disease of the nervous system that affects more than 2.8 million people worldwide. Scientists don’t fully understand what causes the condition but link its development to autoimmunity—when a person’s immune system mistakenly damages healthy cells—along with genetics, Epstein-Barr virus, and other factors. Currently, clinicians diagnose multiple sclerosis with imaging, studies of cerebrospinal fluid, and clinical history. But early-detection methods are desired because they could help patients start treatment sooner and slow the disease’s progression. 

Our model’s performance suggests that AI-based prediction models could identify the risk for multiple sclerosis years before neurological symptoms appear

Raj Gopalan

A team led by Raj Gopalan, MD, at Siemens Healthineers in Tarrytown, New York, trained machine-learning models to predict people’s risk of multiple sclerosis. They harnessed more than 3,000 sets of data from the electronic health records of patients with and without multiple sclerosis from Beth Israel Deaconess Medical Center in Boston. Their “random forest model” parses data on a patient’s age, gender, blood markers, and metabolic data, gathered up to three years before diagnosis. 

The model was highly accurate and demonstrated strong predictive power. Most of the model’s ability to distinguish at-risk patients came from blood measurements of neutrophils, red blood cells, and other markers. These predictions remained consistent for as long as three years before the patients were diagnosed. 

“Our model’s performance suggests that AI-based prediction models could identify the risk for multiple sclerosis years before neurological symptoms appear,” Gopalan said. “This could reveal which patients should be monitored for periodic neurological and cognitive exams when symptoms appear,” he said. “In addition, early confirmation of the diagnosis with imaging and cerebrospinal fluid studies could facilitate disease-modifying treatment.”

Recommended article

Machine learning flags potentially contaminated lab results

Scientists are also applying machine learning to uncover potential contamination in lab samples that could skew test results. When a sample is collected directly from intravenous (IV) catheters instead of a fresh blood draw, the fluid within the catheter can lead to erroneous lab results that slow diagnosis, raise healthcare costs, and lead to improper treatments. Current methods to detect contaminated samples aren’t always accurate and require technicians to perform labor-intensive manual analysis. 

While this won’t immediately reduce the number of contaminated tests, it will hopefully substantially reduce the operational and clinical impact of these events when they do happen

Nicholas Spies

Using a technique called “mixture-of-experts” modeling, researchers have now created a machine-learning pipeline that can identify cases of IV fluid contamination that went undetected by manual methods. The team, led by Nicholas Spies, MD, at Washington University School of Medicine in St. Louis, aggregated more than 9,600,000 chemistry results from patients and simulated IV fluid contamination in some of the samples with common IV solutions. After training various machine-learning models using the simulated results, the scientists generated a final set of predictions. 

The models detected meaningful contamination in several thousand samples. Spies said that the pipeline can detect about 5 to 10 times as many contaminated specimens as his group’s current approach. Furthermore, many of these tests evaded being previously flagged with manual methods–up to 94% in the case of samples contaminated with a solution called lactated Ringer’s. 

“While this won’t immediately reduce the number of contaminated tests, it will hopefully substantially reduce the operational and clinical impact of these events when they do happen, and provide us with a better quality metric with which we can prioritize areas for improvement initiatives,” Spies said. 


Source: Association for Diagnostics & Laboratory Medicine 

13.08.2023

Read all latest stories

Related articles

Photo

Sponsored • Earlier disease prediction and identification

The potential of AI in routine blood testing

It’s widely known that more than 70% of today’s medical decisions involve the results of laboratory tests, but the insights clinicians derive from these tests today may only be scratching the…

Photo

Video • Vacuette® Evoprotect Safety Blood Collection Set

The gentle touch: The next evolution of safety

Vacuette® Evoprotect is a user-friendly butterfly needle with an optimised design. The extra-thin walls have a positive effect on the flow rate and thus the duration of blood collection/infusion.

Photo

Sponsored • Product of the Month

For your most precious samples: MiniCollect® Capillary Blood Collection System

MiniCollect® offers a gentle way to collect small blood samples for a wide range of analyses. The capillary blood sample is becoming increasingly popular as specimen material due to its simpler and…

Related products

Greiner – Vacuette CAT Serum Fast Tube

Clinical Chemistry

Greiner – Vacuette CAT Serum Fast Tube

Greiner Bio-One
Sarstedt – Tempus600 Quantit

Sample Logistics

Sarstedt – Tempus600 Quantit

SARSTEDT AG & CO. KG
Sarstedt – Tempus600 Vita

Sample Logistics

Sarstedt – Tempus600 Vita

SARSTEDT AG & CO. KG
Siemens Healthineers – RapidPoint 500e Blood Gas System

Blood Gases, Electrolytes, Oximetry

Siemens Healthineers – RapidPoint 500e Blood Gas System

Siemens Healthcare GmbH
Alsachim - Dosimmune immunosupressant Alsachim – kit (CE-IVD or RUO)

Clinical Chemistry

Alsachim - Dosimmune immunosupressant Alsachim – kit (CE-IVD or RUO)

Alsachim, a Shimadzu Group Company
Subscribe to Newsletter