OP-Szene (Symbolbild): Wissenschaftler des Universitätsklinikums Heidelberg wollen einen Algorithmus entwickeln, der das individuelle Operationsrisiko eines Patienten vorhersagen kann.

Bild: Universitätsklinikum Heidelberg

"Kognitiver Assistent"

KI soll zukünftig OP-Risiken mindern

Wissenschaftler des Universitätsklinikum Heidelberg entwickeln einen „Kognitiven medizinischen Assistenten“.

Der Algorithmus soll das individuelle Operationsrisiko des Patienten im Vorfeld erkennen, Therapieentscheidungen erleichtern und Komplikationen vorbeugen. Das Projekt wird vom Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg mit 2 Millionen Euro gefördert.

Dafür wollen die Wissenschaftler Methoden des „Maschinellen Lernens“ nutzen. Im Rahmen des Projekts „Kognitiver medizinischer Assistent (KoMed)“ wird ein interdisziplinäres Team der Kliniken für Anästhesiologie sowie für Allgemein-, Viszeral- und Transplantationschirurgie in den kommenden zwei Jahren einen Algorithmus darin trainieren, eine Vielzahl klinischer Daten von Patienten mittels Big-Data-Analysen auszuwerten. Ziel ist es, in den Daten Muster zu erkennen und Zusammenhänge zu identifizieren, die zur Erstellung individueller Risikoprofile genutzt werden können. Der gemeinsam mit industriellen Partnern entwickelte KoMed soll zukünftig eine fundierte Entscheidungshilfe bieten, um Komplikationen durch eine angepasste Behandlung und Versorgung zu vermeiden.

Kooperationspartner sind das Institut für Medizinische Biometrie und Informatik (IMBI), die Abteilung Medizinische Informationssysteme sowie das Zentrum für Informations- und Medizintechnik (ZIM) am Universitätsklinikum Heidelberg. Industrielle Partner sind Mint Medical, phellow seven, Philips und Karl Storz.

Das Komplikationsrisiko lässt sich durch Weiterentwicklung der chirurgischen Techniken und Narkoseverfahren nur zu einem gewissen Grad senken

Pascal Probst

Bisherige Risikoscores richten sich z.B. nach Alter, Geschlecht und Vorerkrankungen. Sie bilden das tatsächliche Komplikationsrisiko des jeweiligen Patienten nur unzureichend ab. Der KoMed wird eine Vielzahl verfügbarer Patientendaten analysieren und erkennen, welche Merkmale mit einem erhöhten bzw. geringen Risiko für Komplikationen wie zum Beispiel Wundinfekte oder Herzinfarkte einhergehen. „Das gibt nicht nur Patienten und Behandlungsteams mehr Sicherheit bei der Therapieentscheidung“, erläutert Projektleiter Dr. Jan Larmann, Oberarzt der Anästhesiologischen Universitätsklinik. „Die möglichst exakte Einschätzung des Risikos erlaubt außerdem einen gezielten Einsatz von Ressourcen und bringt damit auch einen ökonomischen Nutzen.“

„Das Komplikationsrisiko lässt sich durch Weiterentwicklung der chirurgischen Techniken und Narkoseverfahren nur zu einem gewissen Grad senken. Wir benötigen dringend mehr Informationen darüber, welche Merkmale der Patienten mit erhöhtem oder reduziertem Komplikationsrisiko einhergehen, um Patienten in Zukunft individualisiert behandeln zu können“, sagt Professor Dr. Pascal Probst, Oberarzt an der Chirurgischen Universitätsklinik und ärztlicher Leiter des Studienzentrums der Deutschen Gesellschaft für Chirurgie (SDGC). Im Rahmen einer ersten klinischen Beobachtungsstudie werden Routinedaten und Behandlungsverläufe von zunächst 600 chirurgischen Patienten erfasst. Diese Daten werden in strukturierter und analysierbarer Form aufbereitet und liefern die Grundlage, anhand derer KoMed mögliche Risiken zu erkennen lernt. Zwar werden Daten zu Grund- und Begleiterkrankungen, aus der Bildgebung, über Art und Verlauf der Operation, Medikation und Blutwerte sowie eine Vielzahl weiterer Messwerte aus der klinischen Routine bereits jetzt digital erfasst, aber nur ein Bruchteil davon wird zur Risikoprognose genutzt – die zur Verarbeitung verwendeten Systeme lassen keine Analyse zu.

Dieser Artikel könnte Sie auch interessieren

Photo

Krebschirurgie-Tool "SurgOmics"

App warnt vor lebensbedrohlichen Komplikationen im OP

Forscher am Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) sowie der Hochschulmedizin Dresden und des Universitätsklinikums Heidelberg entwickeln eine Methode der Künstlichen Intelligenz (KI), mit der Computer das Risiko für Komplikationen vor, während und nach einer Krebsoperation vorhersagen sollen.

Zusätzlich werden sogenannte Proteomanalysen bei den Patienten der Studie durchgeführt: Diese geben einen Überblick über alle aktuell im Körper aktiven Proteine und damit einen Einblick in Stoffwechselvorgänge, deren Veränderung oder Störung. „Aus der Kombination der Proteomdaten und der klinischen Routinedaten erhoffen wir uns ein besseres Verständnis davon, unter welchen Begleitumständen es zu Komplikationen kommt und welche Krankheitsmechanismen diese auslösen. So wird es in Zukunft möglich sein, gezielt gegenzusteuern “, so Larmann.

Am Ende der Trainingsphase soll das System in der Lage sein, Komplikationen mit einer bisher nicht erreichten Exaktheit vorherzusagen. „Wir gehen davon aus, dass allein schon dieses Wissen dazu beiträgt, Komplikationen vorzubeugen, weil Risikopatienten gezielt intensiver überwacht und früher behandelt werden können“, gibt sich Larmann zuversichtlich. Während bei Risikopatienten oft eine intensivmedizinische Versorgung angezeigt ist, soll KoMed auf der anderen Seite Patienten mit niedrigem Risiko einen unnötigen Aufenthalt auf der Intensivstation ersparen: Wird heute z.B. ein Patient aufgrund seines Alters oder der Art des Eingriffs automatisch einer Hochrisikogruppe zugeteilt, soll KoMed zukünftig einen stabilen Gesundheitszustand erkennen und in die Risikoanalyse einfließen lassen. Vor dem klinischen Einsatz muss KoMed allerdings mit weiteren Patientendaten trainiert und in einer unabhängigen Patientengruppe validiert werden.


Quelle: Universitätsklinik Heidelberg 

25.12.2020

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Radiologischer Roundtable

Covid 19 - warum Innovationen so wichtig sind

Innovationen spielen in Zeiten großer Veränderungen, wie sie die Welt gerade erlebt, eine wichtige Rolle. Die Corona-Pandemie hat nicht nur die normale Zusammenarbeit zwischen Radiologie und…

Photo

Lungenbildgebung bei Covid-19

Künstliche Intelligenz: Erfahrungen mit dem Philips IntelliSpace Portal in Heidelberg

Hans-Ulrich Kauczor, Professor für Radiologie am Universitätsklinikum Heidelberg, arbeitet seit längerem an der KI-basierten Erkennung von Lungenpathologien, zu denen auch Covid-19 gehört. In…

Photo

Covid-19 als Motor für neue Wege in der Radiologie

Teleradiologie aus der Unternehmerperspektive

In der Session „Going remote: how collaborative and virtual capabilities are transforming radiology“ auf dem Philips Live Forum während des RSNA 2020 berichteten vier Radiologieunternehmer von…

Verwandte Produkte

Agfa - Smart XR

Accessories/ Complementary Systems

Agfa - Smart XR

Agfa HealthCare
Canon - Advanced Intelligent Clear-IQ Engine for CT

Artificial Intelligence

Canon - Advanced Intelligent Clear-IQ Engine for CT

Canon Medical Systems Europe B.V.
Canon – Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon – Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Canon - Aquilion Exceed LB

Oncology CT

Canon - Aquilion Exceed LB

Canon Medical Systems Europe B.V.
Canon - HIT Automation Platform

Artificial Intelligence

Canon - HIT Automation Platform

Canon Medical Systems Europe B.V.
Canon Medical - CT Scan Unit

Mobile CT Solutions

Canon Medical - CT Scan Unit

Canon Medical Systems Europe B.V.
Newsletter abonnieren