Auszeichnung

Die optimale Tumor-Therapie berechnen

Die Deutsche Gesellschaft für Medizinische Physik (DGMP) hat Dr. biol. hum. Peter Kletting, Medizinphysiker an der Klinik für Nuklearmedizin am Universitätsklinikum Ulm, für seine Forschungen zur gezielten Bestrahlung von Tumorgewebe mit radioaktiv markierten Peptiden mit dem Wissenschaftspreis 2020 ausgezeichnet.

Photo
Dr. Peter Kletting, Medizinphysiker in der Klinik für Nuklearmedizin am Universitätsklinikum Ulm.
Quelle: privat

Die Nuklearmedizin ist neben Strahlentherapie, Chirurgie und Onkologie ein zentraler Bestandteil der Krebstherapie. Am Universitätsklinikum Ulm erforscht Dr. Peter Kletting wie die nuklearmedizinische Bestrahlung von Tumorpatient*innen zielgerichteter gestaltet werden kann. „Die Frage ist, wie wir das Tumorgewebe noch präziser treffen, gesundes Gewebe schonen und die Therapie noch individueller auf jede Patientin und jeden Patienten abstimmen können“, erklärt Dr. Kletting. Dafür hat Dr. Kletting zusammen mit einem interdisziplinären Team ein mathematisches Modell entwickelt mit dem sich aus individuellen Patientendaten, Erfahrungswerten und modernen Bildgebungsverfahren die jeweils effektivste Therapie simulieren und errechnen lässt.

„Die Forschung von Dr. Kletting verbindet Medizin und Physik und stellt einen wichtigen Baustein für die individuelle Tumortherapie dar“, so Prof. Dr. Ambros J. Beer, Ärztlicher Direktor der Klinik für Nuklearmedizin am Universitätsklinikum Ulm. „Jede Patientin und jeder Patient reagiert anders auf radioaktiv markierte Stoffe. Die Auszeichnung der DGMP unterstreicht die Bedeutung der gewonnen Erkenntnisse und Behandlungsmöglichkeiten. Zu diesem Erfolg gratuliere ich Dr. Kletting herzlich.“

Bei der nuklearmedizinischen Strahlentherapie werden radioaktive Moleküle (hier: Peptide) verwendet. Durch den Stoffwechsel gelangen diese in das betroffene Organ und zerstören die krankhaften Zellen beim radioaktiven Zerfall. Die nuklearmedizinische Diagnostik (mittels Positronen-Emissions-Tomografie/Computertomografie (PET/CT) bzw. Fusionsbildtechnik (SPECT/CT)) macht diese Moleküle sichtbar und ermöglicht Rückschlüsse auf die Verteilung im Körper und den Organen. Diese Erkenntnisse aus der Bildgebung werden mit möglichst vielen bekannten Parametern der Patient*innen kombiniert. Dazu zählen individuelle Einflussfaktoren, wie Anatomie und Physiologie, aber auch Erfahrungswerte aus Therapien, die unter ähnlichen Voraussetzungen durchgeführt wurden. Aus diesen Komponenten lassen sich schließlich optimierte Therapie-Verläufe für jede einzelne Patientin und jeden einzelnen Patienten simulieren. So ist es beispielsweise möglich, im Vorfeld die ideale Konzentration radioaktiver Moleküle zu errechnen, mit deren Hilfe der Tumor bestmöglich attackiert wird ohne andere Organe zu sehr zu schädigen.

Quelle: Deutsche Gesellschaft für Medizinische Physik e.V.

17.09.2020

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Krebsforschung

Weniger klebrige Zellen werden krebsartiger

Forscher haben die Struktur von Tumorgewebe sowie das Verhalten von Tumorzellen eingehend untersucht und dabei wichtige Erkenntnisse erlangt, die in Zukunft Diagnose und Therapie von…

Photo

Nuklearmedizin

Prostatakrebs mit 'wirkungslosem' Medikament überlistet

Patienten mit fortgeschrittenem Prostatakrebs haben oft kaum noch Behandlungsoptionen. Eine besteht darin, radioaktive Moleküle über eine Andockstelle der Tumoroberfläche, PSMA, in die Zelle…

Photo

Gehirntumor

Glioblastom: Fettsäure-Stoffwechsel ist neuer Therapieansatz

Um genügend Energie für ihr schnelles Wachstum zu gewinnen, programmieren Glioblastom-Zellen ihren Fettsäure-Stoffwechsel einfach um. Wie sie das schaffen, war bisher unklar. Doch nun entdeckten…

Verwandte Produkte

Siemens Healthineers – Somatom go.Open Pro

Oncology CT

Siemens Healthineers – Somatom go.Open Pro

Siemens Healthineers
Siemens Healthineers – Somatom go.Sim

Oncology CT

Siemens Healthineers – Somatom go.Sim

Siemens Healthineers