Bildquelle: MPI-IS

News • Robotik innovativ

Mikroroboter rollt tief ins Körperinnere

Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen Blutkörperchen ähnelt, das sich seinen Weg durch den Blutkreislauf bahnt.

Der Roboter hat die Form und Größe eines Leukozyten und bewegt sich wie dieser rollend vorwärts. Möglicherweise ist der Mikroroller damit auf dem besten Weg, die minimal-invasive Behandlung von Krankheiten zu revolutionieren. Das Forschungsprojekt wurde im Journal Science Robotics veröffentlicht.

Unsere Vision ist es, die nächste Generation Transportmittel für die minimal-invasive, gezielte Medikamentenverabreichung zu kreieren

Metin Sitti

In einem Labor haben die Forscher ein Blutgefäß simuliert. Mit Hilfe kleiner Magnetspulen ist es ihnen gelungen, einen Mikroroller durch diese dynamische und dichte Umgebung zu steuern: Das kugelförmige Medikamententransportvehikel hielt dem simulierten Blutfluss stand. Das Forschungsgebiet rund um die zielgenaue Medikamentenabgabe bringt dieser Erfolg einen wesentlichen Schritt weiter: Es gibt keinen besseren Zugangsweg zu allen Geweben und Organen im Körper als den Blutkreislauf, da er alle Zellen versorgt.

Weiße Blutkörperchen – die Wächter des Immunsystems – dienten dem Team als Inspiration, da sie die einzigen beweglichen Zellen innerhalb des Blutflusses sind. Auf ihrer Patrouille zu Orten, an denen Krankheitserreger eingedrungen sind, rollen sie an der Blutgefäßinnenwand entlang und dringen aus dieser heraus, wenn sie zum Beispiel an einer Wunde ankommen. Dass sie sich bewegen können, liegt vor allem an der wesentlich geringeren Fließgeschwindigkeit an den Gefäßinnenwänden.

Die Forscher haben sich dieses Phänomen zunutze gemacht. Sie haben einen Mikroroboter entwickelt, den sie dank seiner magnetischen Eigenschaften aktiv vorwärtsbewegen und innerhalb eines künstlichen Blutgefäßes (die Blutflussgeschwindigkeit war identisch, genauso wie die Konsistenz) steuern konnten. „Unsere Vision ist es, die nächste Generation Transportmittel für die minimal-invasive, gezielte Medikamentenverabreichung zu kreieren – eines, das noch weiter ins Körperinnere dringen kann und dabei noch schwieriger zu erreichende Bereiche zugänglich macht“, sagt Metin Sitti, Direktor der Abteilung für Physische Intelligenz am MPI-IS und Co-Autor der Publikation.

Photo
Die Illustration zeigt, wie die Mikro-Roboter zur zielgenauen Distribution von Wirkstoffen im Körper verwendet werden könnten

Bildquelle: MPI-IS

Jeder Mikroroller hat einen Durchmesser von knapp acht Mikrometern und besteht aus winzigen Glaspartikeln. Eine Seite ist mit einer dünnen Nickel- und Goldschicht bedeckt, an der anderen haften Krebsmedikamente sowie spezielle Moleküle, die Krebszellen aufspüren können. „Mit Hilfe von Magnetfeldern können unsere Mikroroboter stromaufwärts durch ein simuliertes Blutgefäß navigieren, was aufgrund des starken Blutflusses und der dichten zellulären Umgebung eine Herausforderung darstellt. Kein einziger Mikroroboter konnte einem solchen Strom bisher standhalten. Doch wir haben es geschafft. Darüber hinaus können unsere Roboter selbstständig für sie interessante Zellen, beispielsweise Krebszellen, erkennen. Das können sie, weil wir sie mit zellspezifischen Antikörpern beschichtet haben. Sie können die Wirkstoffmoleküle dann während der Fahrt freisetzen“, sagt Yunus Alapan, Post-Doc in der Abteilung für Physische Intelligenz und ebenfalls Co-Autor der Publikation.

Im Labor erreicht der Mikroroller eine Geschwindigkeit von bis zu 600 Mikrometern pro Sekunde. Das sind rund 76 Körperlängen pro Sekunde, was ihn zum schnellsten magnetischen Mikroroboter dieser Größe macht. Bevor jedoch der Roboter solch eine Bewegung unter realen Bedingungen ausführen kann, müssen mehrere Herausforderungen bewältigt werden. Tatsächlich sind sie weit davon entfernt, im menschlichen Körper getestet zu werden. Im Labor gelang es den Forschern, die Roboter mit Mikroskopen abzubilden und mit elektromagnetischen Spulen zu steuern. „In Kliniken allerdings ist die Auflösung der derzeitigen Bildgebungsverfahren nicht hoch genug, um einzelne Mikroroboter im menschlichen Körper abbilden zu können. Zudem würde die Medikamenten-Fracht, die von einem einzelnen Mikroroboter transportiert werden kann, angesichts des Größenunterschieds zwischen einem Mikroroboter (etwa 10 Mikrometer) und Organgewebe (Tausende von Mikrometern) nicht ausreichen. Man müsste also mehrere Mikroroboter zusammen in einem Schwarm manipulieren können, um eine ausreichende Wirkung zu erzielen. Aber davon sind wir noch weit entfernt, dies ist erst der Anfang“, sagt Ugur Bozuyuk, Doktorand in derselben Abteilung und Mitverfasser der Studie.

Dieser Artikel könnte Sie auch interessieren

Die Motivation für das Forschungsprojekt geht auf den berühmten Vortrag des Nobelpreisträgers Richard Feynman mit dem Titel „There‘s Plenty of Room at the Bottom“ zurück. In seinem 1959 gehaltenen Vortrag stellte sich der Physiker mikroskopische Maschinen vor, die sich durch Blutgefäße bewegen und Operationen im Innern des menschlichen Körpers durchführen können. Er prägte damit den Begriff „Chirurg in der Blutbahn“.

In den vergangenen beiden Jahrzehnten hat sich das Forschungsgebiet dank bedeutender Fortschritte in Bezug auf Herstellungstechniken, verwendete Materialien, Steuerung und Bildgebung der Mikromaschinen sehr stark weiterentwickelt. Derzeitige Mikroroboter sind jedoch meist auf Gewebe beschränkt wie es beispielsweise in einem Auge vorkommt oder das relativ leicht zugänglich ist (z.B. Magen-Darm-Trakt) sowie auf langsam fließende Umgebungen. Um jedoch Bereiche tief im Inneren des Körpers zu erreichen, führt womöglich kein Weg vorbei an dem Blutkreislauf – trotz der widrigen Bedingungen. Die Wissenschaftler hoffen, mit ihrer bio-inspirierten Strategie eine neue Plattform für die kontrollierte Navigation von Mikrorobotern durch den Blutkreislauf zu schaffen. Dies könnte den Weg ebnen, damit Mikroroboter eines Tages zielgenau Wirkstoffe an Krankheitsherden abgeben können.


Quelle: Max-Planck-Institut für Intelligente Systeme (MPI-IS)

22.05.2020

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Basierend auf bildgebender Durchflusszytometrie

Neuer Schnelltest sagt schwere Covid-19-Verläufe voraus

Forschenden ist es gelungen, mithilfe der Anzahl und Struktur von Blutplättchen vorherzusagen, ob es zu einem schweren Corona-Verlauf kommen kann.

Photo

News • Soft-Robotik

Roboter mit Knochen, Bändern und Sehnen aus dem 3D-Drucker

Dank einer neuen ​Technik ist es Forschern in Zürich gelungen, spezielle elastische Kunststoffe für den 3D-Druck zu nutzen. So können sie auch menschenähnliche Strukturen herstellen.

Photo

News • Autonome Navigation

Neue Roboternadel steuert selbstständig durch lebendes Gewebe

US-Forscher haben eine robotische Nadel entwickelt, die autonom durch lebendes Gewebe navigiert und dabei geschickt empfindliche Organe, Nerven und Knochen umgeht.

Verwandte Produkte

Alsachim · Dosimmune immunosupressant Alsachim – kit (CE-IVD or RUO)

Clinical Chemistry

Alsachim · Dosimmune immunosupressant Alsachim – kit (CE-IVD or RUO)

Alsachim, a Shimadzu Group Company
Alsachim · Dosinaco anticoagulant reagent kit (RUO)

Clinical Chemistry

Alsachim · Dosinaco anticoagulant reagent kit (RUO)

Alsachim, a Shimadzu Group Company
ARTIS pheno

Single Plane

Siemens Healthineers · ARTIS pheno

Siemens Healthcare GmbH
Beckman Coulter · Access Procalcitonin (PCT)

Immunoassays

Beckman Coulter · Access Procalcitonin (PCT)

Beckman Coulter Diagnostics
Beckman Coulter · DxH 500 Series

Blood Cell Counter

· Beckman Coulter · DxH 500 Series

Beckman Coulter Diagnostics
Beckman Coulter · Early Sepsis Indicator

Blood Cell Counter

Beckman Coulter · Early Sepsis Indicator

Beckman Coulter Diagnostics
Newsletter abonnieren