Goldnanopartikel in einem porösen Hydrogel werden als medizinische Sensoren...
Goldnanopartikel in einem porösen Hydrogel werden als medizinische Sensoren unter die Haut implantiert: Unter dem Dunkelfeldmikroskop ist zu erkennen, wie Zellen (gelb-rot) in die Poren des Hydrogels (dunkelgrün) gewachsen sind.

Quelle: Katja Buder, Nanobiotechnologie-Gruppe, Department Chemie                  

News • In Hydrogel eingebettet

Goldnanopartikel werden unter Haut implantiert

Winzig kleine Goldnanopartikel können als medizinische Sensoren unter die Haut implantiert werden und von hier Informationen über Körperfunktionen oder im Blut zirkulierende Stoffe nach außen übermitteln.

Das grundlegende Prinzip dieser Beobachtung von Biomarkern mithilfe von Nanogold hat die Nanobiotechnologie-Gruppe von Prof. Dr. Carsten Sönnichsen an der Johannes Gutenberg-Universität Mainz (JGU) demonstriert. Nun ist es dem Team gelungen, eine geeignete Verpackung für die Nanoteilchen zu finden. "Die winzigen Sensoren müssen in ein Gel eingebettet werden, damit sie ihre Funktion erfüllen und gut zu handhaben sind", sagt Katja Buder aus der Arbeitsgruppe um Sönnichsen. "An dieses Gel stellen wir einige Bedingungen, es ist noch weit mehr als eine reine Verpackung. Jetzt haben wir unter vier Kandidaten die beste Verbindung herausgefunden." Sehr gut geeignet ist demnach ein Hydrogel, das aus zwei Polymeren besteht und abgekürzt als pHEMA-PEGDA bezeichnet wird.

Histologische Probe des Sensors: Die Nanopartikel sind als gelb leuchtende...
Histologische Probe des Sensors: Die Nanopartikel sind als gelb leuchtende Punkte im Hydrogel zu erkennen, während Zellen (orange) teilweise in die Poren des Gels eingewachsen sind.

Quelle: Bastian Flietel, Nanobiotechnologie-Gruppe, Department Chemie                  

Hydrogel besitzt gewebeähnliche Struktur mit verbundenen Poren

Mit implantierbaren Sensoren können Biomarker für medizinische Zwecke kontinuierlich überwacht werden, ohne dass Blutproben entnommen werden müssen. Für die Lebensqualität beispielsweise von Diabetikern würde diese Datenübertragung eine deutliche Verbesserung bedeuten. Die Gruppe um Carsten Sönnichsen hatte in den vergangenen Jahren solche Nanosensoren entwickelt und gezeigt, dass durch Kontakt mit einem Antibiotikum eine Farbveränderung des Sensors erfolgt, die durch die Haut ausgelesen werden kann. Die Nanopartikel müssen dazu in ein gewebeähnliches Hydrogel eingebettet werden, das große, miteinander verbundene Poren besitzt. Durch diese Poren können kleine Blutgefäße oder Zellen einwachsen, die zum einen den zu analysierenden Stoff zu den Sensoren transportieren und zum anderen das Implantat an Ort und Stelle halten. "Aber am wichtigsten ist, dass die Funktion der Nanosensoren in dieser Hydrogelmatrix erhalten bleibt", sagt Katja Buder, die sich mit den unterschiedlichen Gelen im Rahmen ihrer Doktorarbeit beschäftigt.

Dieser Artikel könnte Sie auch interessieren

Photo

News • Implantierbarer Sensor

Tattoo aus Nanogold soll Diagnostik verbessern

Ein Forschungsteam der Johannes Gutenberg-Universität Mainz (JGU) hat einen neuartigen implantierbaren Sensor entwickelt, der mehrere Monate im Körper verwendet werden kann. Grundlage dafür sind farbstabile Goldnanopartikel, die mit Rezeptoren für bestimmte Moleküle versehen werden. Eingebettet in eine Art künstliches Gewebe aus Polymeren wird das Nanogold unter die Haut implantiert, wo es…

Porenstruktur reguliert Durchlässigkeit des Gels

Getestet wurden vier Kandidaten: Agarose, das ist ein Polysaccharid auf Algenbasis, zwei Copolymere, nämlich pHEMA-TEGDMA und pHEMA-PEGDA, sowie das Polymer pPEGDA. "Die Stoffe müssen einerseits biologisch verträglich sein, damit sie im Körper keinen Schaden anrichten, andererseits dürfen sie nicht biologisch abbaubar sein", so Buder. Das ist noch nicht alles: Das Gel soll vom Köper nicht als Fremdstoff erkannt werden, weil es sonst eingekapselt würde. Dies gelingt durch die Porenstruktur. Dabei sorgen zwei Arten von Poren in zwei Größenskalen für die richtige Mischung: Makroporen im Mikrometerbereich erlauben das Einwachsen von Blutgefäßen und Zellen, während Mikroporen im Nanometerbereich unerwünschte Proteine am Eindringen hindern. "Die Copolymere funktionieren am besten. Die beiden Polymerstränge sind miteinander verknüpft und bilden eine Art Maschenstruktur, die unsere Nanosensoren wie ein Schutzschild umgibt und unerwünschte Eindringlinge abhält", sagt Katja Buder.

Der eigentliche Sensor, der wie eine Antenne funktioniert, besteht aus Milliarden von winzigen Goldnanopartikeln. Auf jedem dieser Nanoteilchen sitzen wiederum eine Menge kleiner DNA-Stränge, an die sich die zu untersuchende Substanz anheftet. Das Gel hat die Aufgabe, die zahllosen Partikel einzubetten, die Funktion der Partikel zu erhalten und das Konglomerat in der Größe von einem Cent-Stück in eine passende Form und Konsistenz zu bringen: Es soll weich und angenehm unter der Haut sein, aber auch nicht zu weich, damit es mit einer Pinzette gut zu handhaben ist. Diese Anforderungen hat pHEMA-PEGDA – die Abkürzung steht für ein Copolymer aus Poly(2-hydroxyethyl methacrylatpoly(ethylen glycol)diacrylat) – am besten erfüllt. "Mit pHEMA-PEGDA haben wir das passende Gel gefunden, das wir auch bei künftigen Versuchen einsetzen werden", erklärt Katja Buder.

Die Arbeit wurdein Applied Bio Materials veröffentlicht.

Quelle: Johannes Gutenberg-Universität Mainz

07.04.2022

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Bauchspeicheldrüsen-Diagnostik

Mit Liquid Biopsy zur besseren Früherkennung von Pankreaskrebs

Erlanger Chirurgen haben einen Biomarker entdeckt, mit dem sich Krebs von gutartigen Erkrankungen unterscheiden lässt – dabei genügt eine einfache Blutabnahme.

Photo

News • Anpassung des Gehirns an CI-Hörprothese

Hören mit Cochlea-Implantat: Auf dem Weg zu genauerer Diagnostik

Ein Cochlea-Implantat verbessert das Sprachverständnis – aber nicht bei jedem gleichermaßen schnell und gut. Forscher untersuchen nun, wie sich das Gehirn an das elektrische Hören anpasst.

Photo

News • Nichtinvasive Alternative zu MRT

Tumor-DNA sagt Rückfallrisiko beim ZNS-Lymphom voraus

Hochauflösende Sequenzierung zirkulierender Tumor-DNA (ctDNA) zeigt an, ob ein Lymphom auf eine Therapie anspricht, wie Wissenschaftler der Universitätsmedizin Köln nun herausfanden.

Verwandte Produkte

Newsletter abonnieren