The image-based consensus molecular subtypes (imCMS) model can be used to...
The image-based consensus molecular subtypes (imCMS) model can be used to predict the molecular classification of each individual image region in patient tumor samples.

Source: University Hospital Zurich

RNA sequencing

Using AI to establish molecular tumor classification

Treating physicians need information about the molecular subtype of the tumor if they are to provide targeted therapy for colorectal carcinoma. A research team from University Hospital Zurich and the University of Oxford have now developed a method to predict the molecular classification of colorectal cancer from digital pathology slides.

Colorectal cancer is the third most common malignant tumor in men and women with approximately 1.8 million new cases globally per year, including around 4,000 in Switzerland. Surgery, radiation and chemotherapy as well as precision therapeutics are the established treatment options, but are associated with relevant side effects. Precise information about the molecular subtype of the tumor using RNA sequencing can support patient stratification for personalized therapy. Yet cancer classification through RNA sequencing remains a resource-intensive, costly process: examining a single sample costs over CHF 1,000. Further, up to 20 percent of samples cannot be conclusively classified due to insufficient availability of material or ambiguous results.

Recommended article

Photo

Microsatellites

Stomach and colorectal cancer: AI identifyies patients for immunotherapy

Changes in certain sections of the genetic material of cancer cells, so-called microsatellites, can provide an important indication of whether immunotherapy may be successful in a patient with stomach or colorectal cancer. Scientists from Uniklinik RWTH Aachen, the German Cancer Research Center (DKFZ), the German Cancer Consortium (DKTK) and the National Center for Tumor Diseases Heidelberg (NCT)…

Advances through image analysis and AI

A research team led by Prof. Viktor Kölzer, Institute of Pathology and Molecular Pathology at University Hospital Zurich (UHZ), and Prof. Jens Rittscher, Institute of Biomedical Engineering at the University of Oxford, have now developed a much cheaper, faster method: they use artificial intelligence to analyze high-resolution images of histological slides. This allows the subclassification of colorectal tumors into one of four distinct transcriptional subtypes and gives an indication of optimal treatment strategies. Unlike RNA sequencing, which has been the gold standard thus far, this purely image-based procedure does not require any additional tissue material. It works even with very small tissue fragments and makes it possible to classify tissue samples that were previously inaccessible due to the technical limitations. The procedure also has the potential to lower costs considerably. Image-based procedures could therefore potentially revolutionize personalized therapy in colorectal cancer. Yet in order to use the new technology, the histological slides need to be appropriately prepared: “to use artificial intelligence for tumor analysis in daily diagnostic practice, we need to digitize pathology workflows,” says Prof. Kölzer.

Personalized medicine

With the help of computer analysis, it is possible to detect complex biological patterns

Prof. Viktor Kölzer

In April this year, Prof. Kölzer accepted the post of Assistant Professor in Digital Pathology at UHZ. This professorship is the first of its kind in Switzerland with strategic importance for personalized medicine. Prof. Kölzer initialized this project on AI-supported cancer classification during his time at the University of Oxford, in a strong interdisciplinary collaboration with the pathologists, bioinformaticians, clinicians and statisticians of the multi-institutional Stratification in COloRecTal Cancer (S-CORT) Consortium.

The study involved the analysis of 1,553 digital tissue slides with data on RNA expression, gene mutations and clinical progression using the latest machine vision and artificial intelligence technologies. This new technology was first published as a preprint in late May 2019 and is recommended for validation in prospective, randomized clinical trials. According to Prof. Kölzer, “After validation, we will be able to centralize the classification of colorectal tumors and release the technology for use.” Scans of histological slides could be sent to university centers, where they would be evaluated and the results returned electronically. In the long term, the method could also be used for other tumor types or even other diseases. Prof. Maughan, leader of the S:CORT consortium comments: “this research shows that, with the help of computer analysis, it is possible to detect complex biological patterns from the way the cancer looks under the microscope using routine ways to prepare tissue slides. This has great potential for providing information on how the cancer will behave in the individual and use this in the future to guide treatment decisions”.

Source: University Hospital Zurich

05.07.2019

Read all latest stories

Related articles

Photo

Chemical clues

AI blood test can spot signs of brain tumour

Chemical analysis of blood samples, combined with an artificial intelligence program, could speed up the diagnosis of brain tumours, according to research presented at the 2019 NCRI Cancer…

Photo

Cancer

Researchers develop tumour growth roadmap

Researchers at Leipzig University and Leipzig University Hospital (UKL) have discovered that tumour growth and tissue invasion by cancer cells can be predicted based on the ontogenetic distance…

Photo

Oncology

Response to gene-targeted drugs depends on cancer type

Cancers with the same genetic weaknesses respond differently to targeted drugs depending on the tumour type of the patient, new research reveals. The study is set to prompt changes in thinking around…

Related products

Atlas Genetics - Atlas Genetics io system

Infectious diseases testing

Atlas Genetics - Atlas Genetics io system

Atlas Genetics Ltd
DiaSys Diagnostic Systems - InnovaStar

Clinical chemistry

DiaSys Diagnostic Systems - InnovaStar

DiaSys Diagnostic Systems GmbH
Hamamatsu Photonics – NanoZoomer S360

Scanner

Hamamatsu Photonics – NanoZoomer S360

Hamamatsu Photonics Deutschland GmbH
Hamamatsu Photonics – NanoZoomer S60

Scanner

Hamamatsu Photonics – NanoZoomer S60

Hamamatsu Photonics Deutschland GmbH