Chemotherapie

Inhibitor verringert Resistenzen von Tumoren

Wenn Chemotherapien nicht im gewünschten Maß wirken, ist eine mögliche Ursache ein erhöhter Stoffwechsel der Krebszelle. Durch diesen kann der Tumor die Chemotherapeutika ausscheiden, bevor sie ihre Wirkung entfalten. Ein möglicher Auslöser des erhöhten Stoffwechsels ist eine außergewöhnlich große Konzentration des Enzyms „Glutathion-S-Transferase P1“. Ein von Maria Bräutigam am Department für Chemie der Universität zu Köln synthetisierter und an der Fakultät für Angewandte Naturwissenschaften der TH Köln charakterisierter „1,2,4-Trioxan-Derivat-Inhibitor“ blockiert das Enzym und verlangsamt dadurch den Metabolismus des Tumors. Die Forschungsergebnisse von Maria Bräutigam könnten langfristig Chemotherapien wirksamer machen. Bis zur Entwicklung eines neuen Medikamentes ist allerdings noch weitere mehrjährige Forschungsarbeit nötig.

Maria Bräutigam, Doktorandin an der Fakultät für Angewandte...
Maria Bräutigam, Doktorandin an der Fakultät für Angewandte Naturwissenschaften der TH Köln.
Quelle: TH Köln/Heike Fischer

Glutathion-S-Transferasen (GST) bilden eine beim Menschen vorkommende Enzymfamilie, die eine zentrale Funktion bei der Ausscheidung von Arzneistoffen aus dem Organismus hat. „Entwickeln Tumore Resistenzen gegen Chemotherapeutika, verringert das den Behandlungserfolg deutlich. Ein erhöhter Stoffwechsel des Tumors, wie ihn unter anderem das GSTP1-Enzym auslöst, wurde bei vielen Tumorerkrankungen wie Brust- oder Lungenkrebs als einer der entscheidenden Faktoren für die Resistenzenbildung identifiziert“, sagt Bräutigam. Der 1,2,4-Trioxan-Derivat-Inhibitor, den Bräutigam im Rahmen ihrer kooperativen Promotion an der Fakultät für Angewandte Naturwissenschaften der TH Köln entwickelt hat, basiert auf einem Naturstoff, der im Einjährigen Beifuß vorkommt, eine Pflanze aus der Familie der Korbblütler.

Auf dieser Grundlage synthetisierte Bräutigam den Inhibitor im Department für Chemie unter Leitung von Prof. Dr. Axel G. Griesbeck, der auch die Erstbetreuung des Promotionsvorhabens innehat. Die zentrale 1,2,4-Trioxaneinheit des Hemmstoffes baute Bräutigam durch eine Reaktion mit Luftsauerstoff auf. So konnte sie auf umweltschädliche Oxidationsmittel verzichten, die oftmals in der Synthese eingesetzt werden. In der Arbeitsgruppe von Dr. Markus Pietsch am Uniklinikum Köln und Prof. Dr. Ulrich Baumann am Department für Chemie führte Bräutigam die biochemische Charakterisierung der Hemmstoffe am isolierten Enzym durch und legte damit einen wichtigen Grundstein für die Identifizierung der Wirkstoffkandidaten.

Im Labor für Bio-Pharmazeutische Chemie am Campus Leverkusen der TH Köln unter Leitung von Prof. Dr. Nicole Teusch untersuchte Bräutigam die Wirksamkeit des neuen Hemmstoffes an unterschiedlichen humanen Tumorzelllinien. „Nachdem ich nachweisen konnte, dass von 15 getesteten Krebszelllinien zehn ein deutlich erhöhtes GSTP1-Niveau zeigen, habe ich den neuen Inhibitor sowohl an einer Brustkrebs-, als auch an einer multiresistenten Lungenkrebszelllinie getestet. Dabei konnte ich feststellen, dass der Inhibitor deutlich selektiver wirkt als bisherige Hemmstoffe und damit potentiell erheblich weniger Nebenwirkungen hat“, so Bräutigam.

„Maria Bräutigam konnte erstmals niedermolekulare GST-Inhibitoren identifizieren, die im Gegensatz zu vielen bislang publizierten Referenzsubstanzen eine hohe Selektivität für GSTP1 aufweisen. Sie schalten das GSTP1-Enzym also sehr gezielt aus“, betont Prof. Dr. Nicole Teusch. „Darüber hinaus erlauben die von ihr synthetisierten und charakterisierten Trioxanderivate den Rückschluss auf eine klare Struktur-Aktivitäts-Beziehung. Das heißt, sie konnte einen direkten Zusammenhang zwischen kleinen chemischen Veränderungen am Molekül und den biologischen Auswirkungen nachweisen“, so Teusch.

Damit stelle die Dissertation eine wichtige Grundlage für die zukünftige Weiterführung und Vertiefung des Forschungsprojektes dar. Anhand der Ergebnisse gäbe es nun eine konkrete Vorstellung davon, wie die Wirksamkeit des Inhibitors weiter verbessern werden kann, so Teusch. In Nachfolgeexperimenten kann nun der optimierte Inhibitor in Kombination mit herkömmlich eingesetzten Chemotherapeutika charakterisiert werden. „Die erzielten Ergebnisse legen einen innovativen Grundstein zur Minimierung der beschriebenen Multiresistenz im Rahmen einer optimierten Chemotherapie. Dennoch bleibt festzuhalten, dass der Wirkstoffkandidat noch weit von einem Marktpräparat entfernt ist, da zahlreiche Optimierungszyklen beispielsweise zur Verbesserung der Wirksamkeit, der Wasserlöslichkeit und der Bioverfügbarkeit nötig sein werden“, sagt Teusch.


Originalpublikation:
"Selective Inhibitors of Glutathione Transferase P1 with Trioxane Structure as Anticancer Agents" Maria Bräutigam, Nicole Teusch, Tobias Schenk, Miriam Sheikh, Rocky Z. Aricioglu, Swantje H. Borowski, Jörg-Martin Neudörfl, Ulrich Baumann, Axel G. Griesbeck und Markus Pietsch, ChemMedChem 2015, 10, 629-639.


Quelle: TH Köln

15.02.2016

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Cholangiokarzinom

Krebs im Gallengang: kombinierte Therapie zeigt Potenzial

Patienten mit bösartigen Tumoren der Gallenwege haben oft eine schlechte Prognose. Forscher untersuchen nun eine kombinierte Behandlungsstrategie aus Immun- und Chemotherapie.

Photo

News • Glioblastoma

Schwerionen-Therapie überwindet Resistenz von Hirntumoren

Glioblastome sind die häufigsten bösartigen Hirntumoren bei Erwachsenen. Da die Tumoren gegen gängige Krebstherapien resistent sind, haben sie eine sehr schlechte Prognose. Wissenschaftler zeigen…

Photo

News • Krebs

Die Tumorkonferenz: Alle für einen

Ist eine Krebserkrankung schwer zuzuordnen oder besonders kompliziert, stößt ein einzelner Mediziner schnell an seine Grenzen. Aus diesem Grund gibt es an vielen Kliniken Tumorkonferenzen, in denen…

Verwandte Produkte

Newsletter abonnieren