Quelle: University of Toronto

Video • EEG vs fMRI

Algorithmus erkennt, wie wir Gesichter wahrnehmen

Mittels EEG-Daten wird nachgebildet, wie wir Bilder verarbeiten

Forscher der University of Toronto haben eine Technologie entwickelt, die abbildet, was eine Person wahrnimmt. Mithilfe der Gehirnaktivität, die mittels Elektroenzephalografie (EEG)-Daten ermittelt wird, gelingt die Rekonstruktion der Bilder. Im Vergleich zur funktionellen Magnetresonanztomografie (fMRI), die in früheren Versuchen zum Einsatz gekommen ist, hat das EEG ein größeres praktisches Potenzial. Für den Versuch sind die Testpersonen mit EEG-Equipment ausgestattet worden. Dabei wurden ihnen Bilder von Gesichtern gezeigt. Währenddessen ist die Gehirnaktivität der Probanden aufgezeichnet worden, um die Gedankenwelt in digitaler Form nachzubilden. Die hier zum Einsatz kommende Technik basiert auf maschinellen Lernalgorithmen. Dies ist nicht das erste Mal, dass Neuroimaging-Techniken angewendet wurden. Der Unterschied liegt darin, dass hier statt der sonst üblichen fMRI das EEG zum Einsatz kommt.

Mithilfe eines EEGs können wir im Detail sehen, wie sich die Wahrnehmung eines Gesichts im Gehirn bildet

Dan Nemrodov

Im Vergleich zur fMRI birgt das EEG zahlreiche Vorteile. Zum einen ist es kostengünstiger und portabel. Zum anderen bietet es eine genauere zeitliche Auflösung. Das bedeutet, dass der genaue Zeitrahmen ermittelt wird, in dem sich eine Impression entwickelt. Die Genauigkeit liegt dabei im Millisekundenbereich. "Die fMRI ermittelt Aktivität im Sekundenbereich, während das EEG im Millisekundenbereich arbeitet", erklärt Dan Nemrodov von der University of Toronto. "Mithilfe eines EEGs können wir im Detail sehen, wie sich die Wahrnehmung eines Gesichts im Gehirn bildet", fügt Nemrodov hinzu. Die Wissenschaftler konnten feststellen, dass unser Gehirn exakt 170 Millisekunden benötigt, um die Repräsentation eines Gesichts, das wir sehen, anzufertigen. Von einer neurotechnologischen Perspektive aus bieten EEG-Daten laut den Forschern ein großes theoretisches und praktisches Potenzial.


Quelle: University of Toronto/pressetext

13.03.2018

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Ethische Fragen zur KI in der psychiatrischen Praxis

Alzheimer und Depression: Diagnose vom Computer?

KI birgt enormes Potenzial bei der Diagnostik neuropsychiatrischer Erkrankungen – Forscher untersuchen die wissenschaftliche, ethische und soziale Bedeutung dieser Entwicklung.

Photo

News • Premiere

Ähnlichkeit zwischen Schizophrenie und Demenz entdeckt

Forscher verglichen erstmals Schizophrenie und frontotemporale Demenz, Erkrankungen, die in den frontalen und Schläfenlappen-Regionen des Gehirns verortet werden.

Photo

News • Neuer Forschungsbereich

„Systemmedizin“: Ein ganzheitlicher Blick auf komplexe Krankheitsprozesse

Das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE) erweitert seine Forschungsaktivitäten um den Bereich der „Systemmedizin“. Im Fokus steht das Beziehungsgeflecht der Mechanismen…

Verwandte Produkte

3DQuorum SmartSlices

Artificial Intelligence

Hologic · 3DQuorum SmartSlices

Hologic, Inc.
Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon · Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
AI-Rad Companion

Artificial Intelligence

Siemens Healthineers · AI-Rad Companion

Siemens Healthcare GmbH
Alphenix Biplane High Definition Detector

Bi-Plane

Canon · Alphenix Biplane High Definition Detector

Canon Medical Systems Europe B.V.
Newsletter abonnieren