Ist das das Protein p53 gefaltet, kann der Donor eingestrahlte Energie auf den...
Ist das das Protein p53 gefaltet, kann der Donor eingestrahlte Energie auf den Akzeptor übertragen (links). Im aufgefalteten Zustand, der durch Chaperone induziert wird, sind beide zu weit voneinander entfernt.

Bild: G. Agam / LMU & V. Dahiya / TUM

Wichtiges Protein

Wie Chaperone die Krebsabwehr in Gang halten

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein solches gezieltes Anti-Tumor-Programm längst erfunden. Jede unserer Zellen ist damit ausgestattet: Werden gravierende Schäden im Erbgut erkannt, zerstört sich die Zelle selbst und verhindert so das Wachstum des Tumors. Ein Münchner Forschungsteam hat jetzt den komplexen Regelungsmechanismus, an dem verschiedene Proteine beteiligt sind, entschlüsselt. „Dass es einen solchen Regelungsmechanismus gibt, und dass dabei das Tumorsuppressor-Protein p53 eine Schlüsselrolle spielt, weiß man schon lange. Nicht bekannt war bisher, welche Rolle molekulare Chaperone bei der Regulation der zellulären Maschinerie spielen“, erklärt Prof. Johannes Buchner, Inhaber des Lehrstuhls für Biotechnologie an der TUM.

Die Forscher veröffentlichten ihre Erkenntnisse jetzt im Journal Molecular Cell.

Dieser Artikel könnte Sie auch interessieren

Photo

Pflanzlicher Helfer

Myrte schaltet „Anstandsdame“ in Krebszellen aus

Die „Gemeine Myrte“ gilt als eher unscheinbares Gewächs, das vor allem im Mittelmeerraum weit verbreitet ist. In der Antike kam sie bei der Verehrung der Göttin Aphrodite zum Einsatz, heute wird sie als Gewürz sowie in der Likörherstellung verwendet. Nach und nach jedoch enthüllen Wissenschaftler, was noch alles in der buschigen Pflanze steckt.

Blick in die molekulare Maschine

Diese Chaperone – der Name stammt aus dem Englischen und bedeutet „Anstandsdame“ – sind Proteine, die darüber wachen, dass sich andere Proteine richtig falten und damit funktionstüchtig sind. Im Labor konnten die Forscherinnen und Forscher zeigen, dass zwei Gruppen dieser Chaperon-Proteine, Hsp70, Hsp40 und Hsp90, die Funktion des Tumorsuppressor-Proteins p53 steuern, indem sie seine dreidimensionale Struktur beeinflussen. Im Reagenzglas beobachteten die Biochemiker was passiert, wenn sie zu einer Lösung, die p53 enthält, die Chaperone Hsp40 und Hsp70 zugaben. p53 verlor dadurch seine Fähigkeit an DNA zu binden. Damit kam auch seine biologische Aktivität zum Erliegen.

Ein Leuchten offenbart die Struktur

Die Zelle verfügt hier über einen äußerst komplexen Regelmechanismus, mit dem die Chaperone das Tumorsuppressor-Protein in Schach halten

Johannes Buchner

Doch was steckt dahinter? Um diese Frage beantworten zu können, markierten die Wissenschaftlerinnen und Wissenschaftler p53 mit fluoreszierenden Farbstoffen. Damit konnten sie die Struktur einzelner p53 Moleküle vermessen. p53 alleine liegt gefaltet vor, unter dem Einfluss von Hsp40 und Hsp70 wird es unter Energieverbrauch vollständig entfaltet. Den gegenteiligen Effekt hat die Zugabe des Chaperons Hsp90: Es überführt das entfaltete p53 wieder in die aktive, gefaltete Form. „Dieser enorme Einfluss der Chaperone hat uns überrascht“, erinnert sich Buchner. „Die Zelle verfügt hier über einen äußerst komplexen Regelmechanismus, mit dem die Chaperone das Tumorsuppressor-Protein in Schach halten.“ Solange die molekularen Anstandsdamen zur Verfügung stehen, ist p53 entfaltet und biologisch inaktiv. Gerät die Zelle aber unter Stress und die Chaperone müssen an anderen Orten für Ordnung sorgen, faltet sich p53, heftet sich an die DNA und löst, wenn nötig, den zellulären Selbstmord aus. 

Laut Buchner, könnte das Verständnis dieses molekularen Zusammenspiels in Zukunft mit dazu beitragen, die Rolle der Proteine besser zu verstehen und neue Angriffspunkte für die Krebstherapie zu finden.


Quelle: Technische Universität München

21.05.2019

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Neuropathologie

Glioblastom: 3D-Tumororganoide zeigen, ob die Therapie wirkt

Am Universitätsklinikum Regensburg besteht mit dem Zentrum für Hirntumoren (ZHT) und der angeschlossenen Wilhelm-Sander-Therapieeinheit NeuroOnkologie eine der größten und modernsten…

Photo

Krebsforschung

Schwarze Nanopartikel bremsen Tumorwachstum

Melanin schützt uns vor schädlichen Sonnenstrahlen, indem er Lichtenergie aufnimmt und in Wärme umwandelt. Diese Fähigkeit lässt sich sehr effektiv für die Tumordiagnose und -therapie…

Photo

Glioblastom

Forscher entschlüsseln, wie sich Hirntumoren entwickeln

Nur drei verschiedene Erbgutveränderungen treiben die frühe Entwicklung bösartiger Glioblastome an, fanden Wissenschaftler vom Deutschen Krebsforschungszentrum in einer aktuellen Untersuchung. Bei…

Verwandte Produkte

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH