Bildquelle: Pete Linforth auf Pixabay

News • Diabetische Retinopathie

Deep Learning ermöglicht automatisierte Augen-Diagnose

Forschende des Helmholtz Zentrums München haben gemeinsam mit der Augenklinik des Klinikums der Universität München (LMU) und der Technischen Universität München (TUM) eine neue Methode entwickelt, die die automatisierte Diagnose von Augenkrankheiten wie diabetischer Retinopathie effizienter macht.

Da die Methode den Bedarf an teuren annotierten Daten für das Trainieren des Algorithmus reduziert, ist sie für Kliniken besonders attraktiv. Für den Anwendungsfall der diabetischen Retinopathie entwickelte die Forschungsgruppe einen Screening-Algorithmus, der 75 Prozent weniger annotierte Daten benötigt und Diagnosen mit der gleichen Leistung durchführen kann wie Fachkräfte.

Die Forscher veröffentlichten ihre Erkenntnisse im Journal Nature Machine Intelligence; der Algorithmus ist auf der Entwicklerplattform GitHub verfügbar.

Künstliche Intelligenz und Deep Learning sind in den letzten Jahren für Kliniken immer interessanter geworden – beispielsweise zur automatisierten Auswertung medizinischer Bilddaten. Um Deep-Learning-Algorithmen beizubringen, Bilder korrekt auszuwerten und Diagnosen vorherzusagen, sind große Mengen an annotierten (mit Informationen versehenen) Daten notwendig. In Kliniken sind annotierte Daten jedoch oft rar, da das Hinzufügen der Informationen durch Fachkräfte sehr kostspielig ist. In der Forschung war man deshalb auf der Suche nach Lösungen, um den Bedarf an großen Datenmengen mit teuren Annotationen zu reduzieren, ohne Einbuße in der Leistung des Algorithmus in Kauf nehmen zu müssen.

Photo
Der von den Forschern entwickelte Algorithmus sagt die Netzhautdicke voraus. Von links nach rechts: Fundus-Bild, OCT-Bild, tatsächliche Netzhautdicke, vorhergesagte Netzhautdicke

© Helmholtz Zentrum München

Diabetische Retinopathie ist eine durch Diabetes hervorgerufene Augenerkrankung, die die Netzhaut schädigt und zur Erblindung führen kann. Zur frühzeitigen Diagnose der Krankheit in Risikopatienten wird die Dicke der Netzhaut regelmäßig gemessen. Dafür nehmen Kliniken ein Bild des Fundus auf, der Oberfläche der Rückseite des Auges. Um die Auswertung dieser Aufnahmen zu automatisieren, haben einige Kliniken begonnen, Deep-Learning-Algorithmen einzusetzen. Diese Algorithmen benötigen eine große Anzahl an Fundus-Bildern mit teuren Annotationen. Anhand dieser lernen sie, die Bilder korrekt auszuwerten.

Die Augenklinik der LMU verfügt über einen Datensatz mit mehr als 120.000 Fundus- und dazugehörigen OCT-Bildern. OCT (optische Kohärenztomografie) liefert präzise Informationen über die Netzhautdicke, wird aber aufgrund der hohen Kosten nicht in jedem Augenzentrum durchgeführt. Die LMU stellte ihre Daten Forschenden des Helmholtz Zentrums München zur Verfügung, die auf dem Gebiet der künstlichen Intelligenz in medizinischen Anwendungen Pionierarbeit leisten.

Dies ist ein perfektes Beispiel dafür, wie wir mit künstlicher Intelligenz den Alltag in der Medizin und somit auch die Gesundheit aller verbessern können

Fabian Theis

„Unser Ziel war es, diese einzigartig große Menge an Fundus- und OCT-Bildern zu nutzen, um eine Methode zu entwickeln, die den Bedarf an teuren annotierten Daten für das Training des Algorithmus reduziert“, sagt Olle Holmberg, Erstautor der Studie am Helmholtz Zentrum München und der TUM School of Life Sciences.

Die Forschungsgruppe entwickelte eine neue Methode, die sie als „cross modal self-supervised retinal thickness prediction“ bezeichnet. Diese Methode nutzen sie zum „Pre-Training“ des Deep-Learning-Algorithmus mit den Daten der LMU. Dabei brachte sich der Algorithmus selbst bei, nicht-annotierte Fundus-Bilder auf Basis unterschiedlicher OCT-abgeleiteter Profile der Netzhautdicke zu erkennen. Damit gelang es dem Algorithmus, die Netzhautdicke allein auf Basis des Fundus-Bildes vorherzusagen.

Dieser Artikel könnte Sie auch interessieren

Photo

Artikel • Große Datenmengen, große Herausforderungen

Big Data: Wie erziehe ich meinen Algorithmus?

Ähnlich wie gute Pädagogen Strategien brauchen, um den Nachwuchs aufs Leben vorzubereiten, müssen auch Radiologen einige Vorarbeit leisten, damit der Computer gut für seine Aufgabe gerüstet ist – die automatisierte Auswertung von Bilddaten. Denn schon beim Training kann man eine Menge falsch machen, warnt Machine-Learning-Experte Dr. Daniel Pinto.

Die neue Methode verringert den Bedarf an teuren annotierten Daten für das Training des Deep-Learning-Algorithmus erheblich. Bei automatisierten Screenings für diabetische Retinopathie erreichte der Algorithmus die diagnostische Leistung sowohl von medizinischen Fachkräften als auch von Algorithmen, die weit mehr Trainingsdaten benötigen. „Wir haben es geschafft, den Bedarf an annotierten Daten um 75 Prozent zu reduzieren”, sagt Prof. Fabian Theis, Direktor des Instituts für Computational Biology am Helmholtz Zentrum München und Wissenschaftlicher Direktor von Helmholtz AI, der Plattform für künstliche Intelligenz der Helmholtz Gemeinschaft. „Die geringe Verfügbarkeit annotierter Daten ist eine große Herausforderung für die Medizin. Wir haben es deshalb zu unserem Ziel gemacht, Methoden zu entwickeln, die weniger Daten benötigen und sich dadurch für den klinischen Einsatz eignen. Kliniken können unseren Screening-Algorithmus für diabetische Retinopathie ab sofort nutzen. Dies ist ein perfektes Beispiel dafür, wie wir mit künstlicher Intelligenz den Alltag in der Medizin und somit auch die Gesundheit aller verbessern können.“

„Die automatisierte Erkennung und Diagnose der diabetischen Retinopathie auf Basis der weit verbreiteten Fundus-Fotografie stellt für Vorsorgeuntersuchungen eine echte Verbesserung dar. Damit könnten auch die Überweisungen von Patienten an teilweise überfüllte spezialisierte Augenkliniken reduziert werden“, sagt Dr. Karsten Kortüm von der Augenklinik der LMU, der für den klinischen Teil dieser Studie verantwortlich war. Darüber hinaus erreichten die Forschenden eine weitere Reduktion, nämlich bei der „Größe des Algorithmus“, d.h. der Anzahl seiner Parameter. Die neue Methode ermöglicht bis zu 200 Mal kleinere Algorithmen. Dies wiederum könnte den Einsatz auf mobilen oder eingebetteten Geräten im klinischen Umfeld erleichtern.

Neben der diabetischen Retinopathie kann die neue Methode auch für andere Anwendungen genutzt werden – insbesondere für solche mit vielen Daten ohne Annotation durch Fachkräfte. Im Bereich von Augenkrankheiten könnten Screenings für die altersbedingte Makuladegeneration (AMD) von der neuen Methode profitieren. 


Quelle: Helmholtz Zentrum München

26.12.2020

Verwandte Artikel

Photo

News • Deep-Learning-Auswertung von CT-Scans

KI zeigt Schlaganfall-Zeitpunkt besonders genau

Ein Team aus Forschenden konnte jetzt durch den Einsatz von Künstlicher Intelligenz (KI) deutlich exakter bestimmen, zu welchem Zeitpunkt ein Schlaganfall stattgefunden hat.

Photo

News • Nicht-invasive Risikobewertung

Prostatakrebs: KI soll unnötige Biopsien vermeiden

Durch die Kombination von Risikomarkern, systematischer Befundung von MRT-Aufnahmen und KI kann das Risiko für Prostatakrebs präziser als bisher vorhergesagt werden, wie eine neue Studie zeigt.

Photo

News • Brustkrebs-Diagnostik

Mammographie erhält KI-Boost

Um die Mammographie-Diagnostik zu verbessern und Untersuchungsergebnisse schneller verfügbar zu machen, setzen Radiologen am Universitätsklinikum Dresden jetzt auf eine neue, KI-basierte Software.

Verwandte Produkte

Newsletter abonnieren