Bildgebendes Faser-Endoskop für Gewebediagnostik entwickelt

Bildquelle: Leibniz IPHT

Krebs-Chirurgie

Bildgebendes Faser-Endoskop für Gewebediagnostik entwickelt

Ob bei einer Krebs-Operation tatsächlich der gesamte Tumor entfernt worden ist, lässt sich mit derzeitigen Verfahren erst nach einem Eingriff mit Sicherheit feststellen. Ein interdisziplinäres Jenaer Forschungsteam hat nun ein neuartiges Faser-Endoskop vorgestellt, mit dem Tumorränder künftig bereits während der Operation direkt im Körperinneren sichtbar gemacht werden könnten.

Die Sonde basiert auf einer eigens entwickelten multimodalen Faser und liefert Gewebebilder, die sowohl morphologische als auch biochemische Informationen enthalten. Ihre Ergebnisse veröffentlichten die Forschenden des Leibniz-Instituts für Photonische Technologien, der Friedrich-Schiller-Universität Jena und der Firma Grintech im Fachjournal „Light: Science & Applications“.

Photo
Multimodale endoskopische Bilder von biologischen Proben (menschliches Epithelgewebe vom Kopf-Hals-Bereich)

Bildquelle: Pshenay-Severin et al., Light Science & Applications 2021 (CC BY 4.0)

Bis und Patienten Sicherheit darüber haben, ob eine Krebs-Operation erfolgreich war, können unter Umständen mehrere Tage vergehen. Erst die nachträgliche histopathologische Untersuchung einer entnommenen Biopsie gibt Gewissheit darüber, ob tatsächlich der gesamte Tumor entfernt worden ist. Das vom Jenaer Forschungsteam entwickelte Faser-Endoskop hingegen eröffnet die Möglichkeit eine Diagnose in Echtzeit zu erreichen. Die Sonde kombiniert drei Bildgebungstechniken auf einmal und liefert räumlich hoch aufgelöste Gewebebilder aus dem Körperinneren. Sie enthalten sowohl morphologische als auch biochemische Informationen. „Das Endoskop bietet das Potenzial, schnell und zuverlässig zwischen gesundem und krankem Gewebe zu unterscheiden — und das in vivo, also in einer minimalinvasiven Untersuchung, bei der die Sonde direkt auf das verdächtige Gewebe aufsetzt“, erläutert Prof. Jürgen Popp, Leiter des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) in Jena, unter dessen Leitung die neuartige Sonde erforscht wurde.

Dazu entwickelte das Fasertechnologie-Team am Leibniz-IPHT eine spezielle mikrostrukturierte optische Glasfaser. Im Zusammenspiel mit einem intelligenten und ultrakompakten optischen Konzept der FirmaGRINTECH führt sie zu einem vollständig faserbasierten endoskopischen Aufbau für die multimodale nichtlineare Endoskopie. Sie nimmt Gewebebilder auf, wie sie derzeit mit einem handelsüblichen, sperrigen Laser-Scanning-Mikroskops gemacht werden und ist dabei vergleichsweise kostengünstig herstellbar. „Perspektivisch könnte die neuartige multimodale Bildsonde damit neue Möglichkeiten für eine markierungsfreie Gewebediagnostik in Chirurgie und Endoskopie eröffnen — etwa, um Tumorränder bereits während der Operation eindeutig zu erkennen“, blickt Jürgen Popp voraus. 

Dies würde nicht nur dazu beitragen, die Heilungschancen zu verbessern, sondern könnte darüber hinaus erhebliche Kosten im Gesundheitssystem einsparen, indem es teure und für die Patienten belastende Nachbehandlungen zu vermeiden hilft. Derzeit werden etwa bei Tumoren im Kopf-Hals-Bereich nach knapp jeder 10. Operation nachträglich Krebszellen aufgefunden.

Die technologische Realisierung der patentierten bildgebenden Fasersonde ist das Ergebnis der langjährigen Zusammenarbeit der Jenaer Forschenden mit dem Mikrooptik-Spezialisten Grintech. „Unser Know-How auf dem Gebiet endomikroskopischer Sonden, welches wir jetzt auch auf den Einsatz miniaturisierter Scanner mit entsprechender Ansteuerung und Bildverarbeitungssoftware ausgedehnt haben sowie die Kompetenz des Leibniz-IPHT bei der Entwicklung mikrostrukturierter Glasfasern haben sich ideal ergänzt“, sagt Dr. Bernhard Messerschmidt von der Firma Grintech, die sich Ende 1999 als Spin-off des Jenaer Fraunhofer Instituts für Angewandte Optik und Feinmechanik gründete. „Insofern ist diese gemeinsame Entwicklung auch eine Erfolgsgeschichte des Optik- und Photonik-Standorts Jena — sowohl in der engen Vernetzung von Wissenschaft und Industrie wie in unserer Zusammenarbeit in hocheffizienten interdisziplinären Teams hier“, ergänzt Jürgen Popp.


Quelle: Leibniz-Institut für Photonische Technologien

13.10.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Sanfte Eingriffe

Endoskopie erobert mehr Bereiche in der Diagnostik

Für viele Menschen ist die Bestätigung des Krebsverdachts verknüpft mit geringen Heilungschancen und einer beträchtlichen Einschränkung ihres gewohnten Lebens. Doch kann vielen Patienten,…

Photo

Oropharynxkarzinom

Mund-Rachen-Krebs: Vorteile der Radiotherapie gegenüber Roboter-OP

Bei Karzinomen im Mund-Rachen-Bereich werden in Abhängigkeit von der Ausdehnung des Tumors Operation, Strahlentherapie und Chemotherapie singulär oder in Kombination eingesetzt. Bei Tumoren im…

Photo

Personalisierte Onkologie

„Der Anzug muss sitzen“ – individualisierte Krebstherapien

Das Nationale Centrum für Tumorerkrankungen Dresden (NCT/UCC) arbeitet intensiv an der Zukunft der Krebsmedizin: Im April und Mai starten mehrere Studien für neue maßgeschneiderte Medikamente…

Verwandte Produkte

Intermedical – "New" Radius XP with flat panel

Surgical Flat Panel C-Arms

Intermedical – "New" Radius XP with flat panel

INTERMEDICAL SRL
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Stephanix – Omniscop DReam S

Surgical Flat Panel C-Arms

Stephanix – Omniscop DReam S

STEPHANIX
Newsletter abonnieren