woman with dark robotic arm implant
Frau mit Roboterarm (Symbolbild)

Bildquelle: Adobe Stock/alfa27

News • Absichtserkennung künstlicher Gliedmaßen

Eine Prothese, die weiß, was ihr Träger will

Ein Glas anheben, die Faust ballen, mit dem Zeigefinger eine Telefonnummer tippen – hochmoderne robotische Hände können mithilfe biomedizinischer Technologie bereits Erstaunliches. Doch was im Labor gelingt, stößt im Alltag an Grenzen. Denn die Absichten des einzelnen Menschen, seine Umgebung und die Dinge darin sind zu vielfältig, um sie einmalig vorgeben zu können.

Ein Team der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) erforscht, wie sogenannte intelligente Prothesen weiter verbessert und zuverlässiger gemacht werden können. So soll die Prothese mithilfe interaktiver künstlicher Intelligenz lernen, den menschlichen Willen genauer zu erkennen, ihre Umwelt zu registrieren – und sich dabei ständig weiterentwickeln. Das Projekt wird von der EU mit 6 Millionen Euro gefördert, die FAU erhält 467.000 Euro. „Wir arbeiten buchstäblich an der Schnittstelle von Mensch und Maschine“, erklärt Prof. Dr. Claudio Castellini, Professur für Medizinrobotik an der FAU. „Prothesen für die oberen Gliedmaßen haben sich in den letzten Jahrzehnten technologisch stark weiterentwickelt.“ Mithilfe der Oberflächen-Elektromyographie etwa können Haut-Elektroden am verbliebenen Armstumpf feinste Muskelregungen erfassen.

Diese Biosignale können konvertiert und als elektrische Impulse auf die Prothese übertragen werden. „Der Träger oder die Trägerin steuert die Handprothese also selbstständig mit dem Armstumpf. Durch Methoden der Mustererkennung und des interaktiven maschinellen Lernes kann der Mensch der Prothese zudem seine individuellen Bedürfnisse beim Ausführen einer Geste oder einer Bewegung beibringen.“

Wir nutzen die Möglichkeiten der Absichtserkennung zur Steuerung von assistiver und rehabilitativer Robotik

Claudio Castellini

Doch die fortschrittlichen robotischen Prothesen sind im Hinblick auf Komfort, Funktion und Kontrolle noch nicht optimal ausgereift, weshalb Menschen mit fehlenden Gliedmaßen oft funktionslose, rein kosmetische Prothesen bevorzugen. Das neue EU-Horizon-Projekt „AI-Powered Manipulation System for Advanced Robotic Service, Manufacturing and Prosthetics (IntelliMan)“ befasst sich deshalb damit, wie diese noch effektiver und zielgerichteter mit ihrer Umwelt interagieren können. Die Forschenden der FAU ergründen dabei insbesondere, wie reale, aber auch virtuelle Prothesen der oberen Gliedmaßen besser kontrolliert werden können. Fokus ist die sogenannte „Intent Detection“, auf Deutsch Absichtserkennung. 

Prof. Castellini und sein Team entwickeln dazu die Erfassung und Analyse der menschlichen Biosignale weiter und entwerfen innovative Algorithmen des maschinellen Lernens, um individuelle Bewegungsmuster einer Person auszumachen. Ihre Ergebnisse validieren sie in Nutzerstudien an Proband/-innen mit und ohne körperliche Einschränkungen. Außerdem leitet das FAU-Team den Bereich „Shared Autonomy between humans and robots“ des EU-Projekts, dessen Ziel es ist, die Ergebnisse im Hinblick auf die Sicherheit zu prüfen. 

Prof. Castellini leitet das „Assistive Intelligent Robotics“-Lab (AIROB) an der FAU, das sich mit der Steuerung von assistiver Robotik für die oberen und unteren Gliedmaßen sowie funktionaller Elektrostimulation befasst. „Wir nutzen die Möglichkeiten der Absichtserkennung zur Steuerung von assistiver und rehabilitativer Robotik“, erklärt der Wissenschaftler. „Dazu gehören am Körper tragbare Roboter, wie Prothesen und Exoskelette, aber auch Roboterarme und Simulationen in der Virtual Reality.“ Die Professur konzentriert sich dabei insbesondere auf die Biosignalverarbeitung verschiedener Sensormodalitäten und Methoden des maschinellen Lernens zur Absichtserkennung, forscht also an der Schnittstelle und Interaktion zwischen Mensch und Maschine. 

In seiner früheren Forschung am Deutschen Zentrum für Luft- und Raumfahrt (DLR) bis 2021 ging Castellini der Frage nach, wie virtuelle Handprothesen Menschen mit Amputationen gegen Phantomschmerzen helfen können. Neben Castellini ist Doktorand Fabio Egle, wissenschaftlicher Mitarbeiter an der Professur, maßgeblich an IntelliMan beteiligt. Der FAU- Anteil des EU-Projekts wird über eine Zeit von dreieinhalb Jahren mit 467.000 Euro gefördert, das Gesamtbudget liegt bei 6 Millionen Euro. Koordiniert von der Universität von Bologna, sind an „IntelliMan“ unter anderem auch das DLR, die Polytechnische Universität von Katalonien, die Universität Genua, die Universität „Luigi Vanvitelli“ in Kampanien sowie die Bayerische Forschungsallianz (BayFOR) beteiligt. 


Quelle: Friedrich-Alexander-Universität Erlangen-Nürnberg

26.12.2022

Verwandte Artikel

Photo

News • Kooperationsprojekt „AI-REN“

Erfolg von Nierentransplantation per KI vorhersagen

Kann eine KI vorhersagen, wie gut ein Patient eine Spenderniere annehmen wird? Im Rahmen des Projekts „AI-REN“ gehen Forscher aus Deutschland und Dänemark dieser Frage nach.

Photo

News • Entlastung im medizinischen Alltag

KI und Robotik unterstützen bei der Ultraschall-Diagnostik

Robotische Ultraschallsysteme können Routineuntersuchungen autonom übernehmen und Ärzte im OP unterstützen. Neue Forschung zeigt: Die Systeme können Mediziner im Alltag sinnvoll entlasten.

Photo

News • Robotik-unterstützte Bewegungstherapie

Mit KI Herzschwäche-Patienten besser versorgen

Ein interdisziplinäres Team will mittels umfangreicher Datenanalysen durch KI individualisierte Therapien für Betroffene mit Herzschwäche entwickeln.​

Verwandte Produkte

Newsletter abonnieren