Darstellung einer Doppelhelix (rechts) und einem Imitat (links), bestehend aus...
Darstellung einer Doppelhelix (rechts) und einem Imitat (links), bestehend aus einem einzelnen Helixstrang, auf dessen Oberfläche zwei Netze negativer Ladungen (graue und rote Bereiche) so aufgebracht sind wie die negativen Ladungen der beiden DNA-Stränge.
© Ivan Huc

Pharmaforschung

Künstliche Moleküle imitieren die DNA

Künstliche Moleküle können nicht nur die Strukturen ihres biologischen Modells nachahmen, sie können sogar ihre Funktionen übernehmen und ihnen Konkurrenz machen.

Zu diesem Ergebnis kamen Forscher des CNRS, des Inserm und der Universität Bordeaux. Sie schufen eine künstliche Sequenz, die zum ersten Mal die Oberflächeneigenschaften der DNA nachahmt. Dieses künstliche Molekül ist in der Lage, die Aktivität mehrerer Enzyme zu blockieren, darunter die HIV Integrase, durch die der HI-Virus sein Genom in die Wirtszelle einschleust.  Diese Ergebnisse, die in der Fachzeitschrift Nature Chemistry veröffentlicht wurden, ebnen den Weg für neue pharmakologische Wirkstoffe, die auf der Hemmung der Interaktionen zwischen DNA und Proteinen basieren.

Obwohl das Design auf die Ähnlichkeit zur DNA abzielt, verdankt das Foldamer seine wertvollsten Eigenschaften gerade seinen Unterschieden zur DNA

Ivan Huc

Die DNA, zentrales Molekül der Lebewesen, ist Träger der Erbinformation. Sie hat die Form einer Doppelhelix, in der sich zwei komplementäre Nukleinsäure-Stränge unter der Ausbildung von Basenpaaren umeinander wickeln. Damit die Erbinformation gelesen und umgesetzt werden kann – oder im Gegenteil, um die Expression zu verhindern bzw. zu regulieren – tritt eine Vielzahl von Proteinen in Wechselwirkung zur DNA, z.B. „hängen“ sie sich an die negativen Ladungen an der Oberfläche. So z.B. die HIV Integrase, die virale DNA-Stränge in die menschliche DNA und die Topoisomerase 1 (ein Enzym, das Spannungen und Verdrillungen im DNA-Molekül vermeidet) einschleust.

Forschern des Instituts für Chemie und Biologie von Membranen und Nano-Objekten (CNRS / Universität Bordeaux/ Bordeaux INP), des Labors für Grundlagen der Mikrobiologie und Pathogenität (CNRS/Universität Bordeaux) und des Forschungsinstituts für Krebsforschung in Montpellier (INSERM/Universität Montepellier) ist es gelungen, helikoidale (spiralförmige) Moleküle künstlich herzustellen, die perfekt die Oberflächeneigenschaften der DNA-Doppelhelix nachahmen und insbesondere die Positionierung ihrer negativen Ladungen. Diese Moleküle sind Derivate von Foldameren – künstliche Makromoleküle, die sich schraubenförmig falten und nach einer Art Baukasten-Prinzip vielfach modellieren lassen (in diesem Beispiel einen einzelnen Helixstrang). Die Imitation ist so täuschend echt, dass diese Foldamere wie Köder auf einige Proteine wirken, die sich an die DNA binden, darunter die Topoisomerase 1 und die HIV Integrase. Die Forscher konnten zeigen, dass die Bindung der HIV Integrase an das Foldamer stärker war als an die DNA selbst. "Obwohl das Design auf die Ähnlichkeit zur DNA abzielt, verdankt das Foldamer seine wertvollsten Eigenschaften gerade seinen Unterschieden zur DNA", betont der Forscher Ivan Huc

Diese DNA-Imitate ebnen den Weg für noch unerforschte Ansätze zur Unterdrückung der Interaktionen zwischen DNA und Proteinen und könnten zur Entwicklung neuer Medikamente beitragen. 


Quelle: CNRS – französisches Institut für wissenschaftliche Forschung

19.04.2018

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Pilotstudie

Gelenkkapsel-Tumor mit Medikamenten bekämpfen

Der Tenosynoviale Riesenzelltumor, kurz TGCT, ist ein Tumor, der die Gelenkkapsel meist großer Gelenke befällt. In seiner knotigen Form ist dieser meist ein Zufallsbefund, der chirurgisch heilbar…

Photo

Gen-Sequenzierung

Das volle Potenzial in die Kliniken bringen

Bei der Sequenzierung der Erbinformation wurden in den letzten Jahren enorme Fortschritte erzielt. Die Bestimmung der Nukleotid-Abfolge in DNA-Molekülen kann immer schneller und zugleich akkurater…

Photo

Netzhauterkrankung

Augenheilkunde: Erste zugelassene Gentherapie durchgeführt

Augenärzte des Klinikums der Ludwig-Maximilians-Universität haben als erstes Zentrum in Deutschland die erste zugelassene Gentherapie zur Behandlung einer erblich bedingten Netzhauterkrankung…

Verwandte Produkte

Eppendorf - Mastercycler nexus X2

Research use only (RUO)

Eppendorf - Mastercycler nexus X2

Eppendorf AG
SARSTEDT - Low DNA Binding Micro Tubes

Research use only (RUO)

SARSTEDT - Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Agena Bioscience - MassARRAY Colon Panel

Amplification/Detection

Agena Bioscience - MassARRAY Colon Panel

Agena Bioscience GmbH
Eppendorf - BioSpectrometer fluroescence

Research use only (RUO)

Eppendorf - BioSpectrometer fluroescence

Eppendorf AG
Eppendorf - μCuvette G1.0

Research use only (RUO)

Eppendorf - μCuvette G1.0

Eppendorf AG