Repräsentativer Fall einer 47-jährigen Patientin mit einer Hirnmetastase von...
Repräsentativer Fall einer 47-jährigen Patientin mit einer Hirnmetastase von Brustkrebs. Diese wurde durch die 1D-CNN- und CMRO2-Merkmale korrekt klassifiziert, von den Radiologen jedoch fälschlicherweise als Glioblastom eingestuft. Kontrastverstärkte (CE) T1w- und FLAIR-MRT-Daten in Kombination mit den quantitativen Karten des scheinbaren Diffusionskoeffizienten (ADC) und des zerebralen Blutvolumens (CBV) wurden von zwei zertifizierten Radiologen im Konsens für das Human Reading verwendet. MRT-Biomarker-Karten für den Sauerstoffstoffwechsel, einschließlich der Sauerstoffextraktionsfraktion (OEF), der zerebralen metabolischen Sauerstoffrate (CMRO2), der kapillaren Sauerstoffspannung (capiPO2) bzw. der mitochondrialen Sauerstoffspannung (mitoPO2), der Patientin sind im rechten Teil der Abbildung dargestellt.

Bildquelle: Stadlbauer et al., Metabolites 2022 (CC BY 4.0)

News • Primärtumor oder Metastase?

Deep Learning und Radiomics für präzise Unterscheidung bei Hirntumoren

Die Unterscheidung von Primärtumoren und Metastasen kann bei Hirntumoren rasch und präzise mittels Radiomics und Deep Learning-Algorithmen erfolgen. Dies ist die Kernaussage einer Studie der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften (KL Krems).

Die jetzt in Metabolites veröffentlichte Arbeit zeigt, dass Magnetresonanz-basierte radiologische Daten des O2-Stoffwechsels von Tumoren eine hervorragende Grundlage für die Unterscheidung mit Hilfe von neuronalen Netzwerken bieten. Diese Kombination von sogenannten „oxygen metabolic radiomics“ mit Analysen durch spezielle Künstliche Intelligenz war dabei den Auswertungen durch menschliche Experten in allen wesentlichen Kriterien deutlich überlegen. Dieses ist umso beeindruckender, als wesentliche Sauerstoffwerte zwischen den Tumorarten nicht maßgeblich voneinander abwichen – und neuronale Netzwerke auf deren Grundlage dennoch eindeutige Unterscheidungen vornehmen konnten.

Glioblastom (ein Primärtumor) und Hirnmetastasen sind die häufigsten Arten von Hirntumoren bei Erwachsenen. Ihre Behandlung muss grundsätzlich unterschiedlich erfolgen, und eine rasche und klare Diagnose beeinflusst daher den klinischen Erfolg. Tatsächlich jedoch ist ihre Differenzierung schwierig, da sie sich in klassischen Magnetresonanz (MR)-Aufnahmen kaum unterscheiden. Anders bei sogenannter physio-metabolischer MR, die Stoffwechselvorgänge im Tumorgewebe erfassen kann. Diese jedoch liefert so große Datenmengen, dass ein Einsatz in der Routinediagnostik Auswertungen durch Künstliche Intelligenz erforderlich machen würde. Deren Zuverlässigkeit demonstriert nun ein Team um Prof. Andreas Stadlbauer von der KL Krems anhand eines eigens entwickelten Deep Learning Algorithmus und MR-basierten Daten zum O2-Stoffwechsel der beiden Tumorarten.

„Tatsächlich gelang es mit unserem Ansatz, bessere Unterscheidungen der Tumorarten zu erreichen als menschliche Expertinnen und Experten das im Vergleich erzielen konnten“, fasst Prof. Stadlbauer die Ergebnisse der internationalen Studie zusammen. Der Medizinphysiker am Zentralinstitut für medizinische Radiologie-Diagnostik des Universitätsklinikums St. Pölten, Lehr- und Forschungsstandort der KL Krems, führt dazu weiter aus: „In allen wichtigen Unterscheidungskriterien wie Genauigkeit, Sensitivität, Spezifität und Präzision war die Auswertung der MR-basierten Sauerstoffdaten durch unser spezielles neuronales Netzwerk den Radiologinnen und Radiologen überlegen. Auch bei statistischen Auswertungen wie den F-Werten und dem AUROC war diese Methode besser als die menschlichen Auswertungen.“ 

Interessanterweise wichen weder der Mittelwert noch der Median dieser beiden Parameter zwischen den beiden Tumorarten wesentlich voneinander ab – aber dennoch gelang unserem CNN eine klare Differenzierung beider Tumorarten

Andreas Stadlbauer

Grundlage der Messungen waren dabei ein vom Team eigens entwickeltes sogenanntes „Convolutional Neural Network“ (CNN). Dies ist eine Sonderform eines künstlichen neuronalen Netzes, das speziell für maschinelles Lernen und die Verarbeitung von Bild- oder Audiodaten konzipiert wird und Teile biologischer Vorgänge nachempfindet. Im Rahmen der Studie wurde das CNN dann mittels Tumordaten der umfangreichen Datenbank am Universitätsklinikum St. Pölten trainiert und anschließend zur Analyse von MR-basierten Sauerstoffwerten von neuen Patienten eingesetzt. 

Die Sauerstoffwerte, die dabei im Rahmen der Studie erhoben wurden, waren unter anderem der zerebrale Sauerstoffumsatz (CMRO2) sowie die mitochondrialen Sauerstoffsättigung (mitoPO2), die Auskunft über den zellulären Energieumsatz gibt. „Interessanterweise“, so Prof. Stadlbauer, „wichen weder der Mittelwert noch der Median dieser beiden Parameter zwischen den beiden Tumorarten wesentlich voneinander ab – aber dennoch gelang unserem CNN eine klare Differenzierung beider Tumorarten.“ 

Die Studie zeigt das große diagnostische Potenzial, das in der Kombination beider Methoden steckt. Tatsächlich aber kommen radiologische Daten des O2-Stoffwechsels im klinischen Alltag noch erst sehr begrenzt zum Einsatz. Prof. Stadlbauer und sein Team möchten dies ändern und planen daher bereits eine umfangreichere Studie, die die jetzt erhobenen Daten nicht nur bestätigen soll, sondern auch Methoden einsetzen wird, die noch enger an der klinischen Routine sind. Dazu Prof. Stadlbauer: „In der jetzigen Studie waren zur Vorbereitung der Datenanalyse noch einige manuelle Schritte notwendig. Für die klinische Routine ist das zu zeitaufwendig und limitiert auch die Vergleichbarkeit zwischen verschiedenen Institutionen. Wir planen daher den Einsatz von CNN auch in dieser Phase.“ 


Quelle: Karl Landsteiner Privatuniversität für Gesundheitswissenschaften

20.01.2023

Verwandte Artikel

Photo

News • Personalisierte Medizin

Glioblastom: KI prognostiziert Hirntumor-Wachstum

Forscher der University of Waterloo haben ein neues Berechnungsmodell zur besseren Vorhersagbarkeit des Wachstum von Glioblastoma multiforme, einer tödlichen Art von Gehirntumoren, entwickelt.

Photo

News • Nicht-invasive Risikobewertung

Prostatakrebs: KI soll unnötige Biopsien vermeiden

Durch die Kombination von Risikomarkern, systematischer Befundung von MRT-Aufnahmen und KI kann das Risiko für Prostatakrebs präziser als bisher vorhergesagt werden, wie eine neue Studie zeigt.

Photo

News • Bildrekonstruktion mit Deep Learning

Neue MRT-Technik erkennt Schlaganfall in kürzester Zeit

Deep Learning-KI soll dabei helfen, MRT-Aufnahmen schneller zu rekonstruieren und die Bildqualität erhöhen. Das hilft bei der Erkennung akuter ischämischer Schlaganfälle.

Verwandte Produkte

Newsletter abonnieren