In der Arbeitsgruppe von Altuna Akalin analysieren Forschende große...
In der Arbeitsgruppe von Altuna Akalin analysieren Forschende große Datensätze.

© Felix Petermann, MDC

News • KI-Ansatz gegen Darmkrebs

Deep Learning erkennt molekulare Muster von Krebs

Eine Plattform für künstliche Intelligenz, die am Max-Delbrück-Centrum für Molekulare Medizin (MDC) entwickelt wurde, kann genomische Daten extrem schnell analysieren. Sie filtert wesentliche Muster heraus, um Darmkrebs zu klassifizieren und die Entwicklung von Wirkstoffen zu verbessern. Einige Darmkrebs-Arten müssen demnach neu geordnet werden.

Ein neuer Deep-Learning-Algorithmus kann verschiedene Arten von genomischen Daten, die aus kolorektalen Karzinomen gewonnen wurden, schnell und präzise analysieren und so genauer klassifizieren. Dies könnte die Diagnose und damit verbundene Behandlungsoptionen verbessern, berichten die Forscher im Fachjournal Life Science Alliance

Kolorektale Tumore entwickeln sich äußerst unterschiedlich, sie reagieren auf unterschiedliche Medikamente und auch die Überlebensraten sind sehr verschieden. Meist werden sie auf der Basis von Genexpressionsdaten in Subtypen klassifiziert. „Die meisten Krankheiten sind deutlich komplexer als ein einzelnes Gen“, sagt Dr. Altuna Akalin, der Leiter der Forschungsgruppe Bioinformatik am Berliner Institut für Medizinische Systembiologie (BIMSB) des MDC. „Um diese Komplexität zu erfassen, brauchen wir irgendeine Art von maschinellem Lernen, die wirklich sämtliche Daten verarbeiten kann.“ 

Um die zahlreichen im genetischen Material vorhandenen Merkmale, einschließlich der Genexpression, Punktmutationen und strukturelle Veränderungen, bei denen ein DNA-Abschnitt mehrfach erzeugt wird (CNV, copy number variants), analysieren zu können, haben Akalin und sein Doktorand Jonathan Ronen die „Multi-omics Autoencoder Integration“-Plattform, kurz „maui“, entworfen.

Für überwachtes maschinelles Lernen braucht man normalerweise menschliche Experten, die die Daten kennzeichnen und den Algorithmus dann so trainieren, dass er diese Kennzeichen vorhersagen kann. Um zum Beispiel die Augenfarbe anhand von Bildern von Augen vorherzusagen, müssen Forscher den Algorithmus zunächst mit Bildern füttern, in denen die Augenfarbe gekennzeichnet ist. Der Algorithmus lernt daraufhin, verschiedene Augenfarben zu erkennen, und kann dann neue Daten selbstständig analysieren. 

Beim unüberwachten maschinellen Lernen ist hingegen kein Training notwendig. Ein Deep-Learning-Algorithmus wird mit Daten ohne Kennzeichnungen gefüttert und sichtet diese, um gemeinsame Muster oder typische Eigenschaften – in der Fachsprache heißen sie latente Faktoren – zu finden. Diese Art von Algorithmus kann zum Beispiel Bilder von Gesichtern verarbeiten, die in keiner Weise gekennzeichnet sind, und dabei Schlüsselmerkmale wie Augenfarben, Augenbrauen- und Nasenformen oder Lächeln erkennen. Als Deep-Learning-Plattform ist maui in der Lage, mehrere Omics-Datensätze zu analysieren und die wichtigsten Muster oder Merkmale, in diesem Fall Gensätze oder Indikatoren für Darmkrebs, zu erkennen. 

Proben von Darmkrebstumoren kann man – gemäß der Genexpression – in vier...
Proben von Darmkrebstumoren kann man – gemäß der Genexpression – in vier Standard-Subtypen einordnen. Die Plattform maui hat die Proben ähnlich klassifiziert. Allerdings gibt es nun Hinweise darauf, dass Subtyp 2 (in grün, Abbildung A) eigentlich in zwei Subtypen unterteilt werden müsste (grün und hellblau in Abbildung B).

© Akalin Lab, MDC

Die maui-Plattform erkannte in den Daten Muster, die mit den vier bekannten Subtypen kolorektaler Karzinome übereinstimmen, und ordnete Tumore diesen Subtypen mit hoher Präzision zu. Sie hat noch eine interessante Entdeckung gemacht. Sie fand ein Muster, das nahelegt, dass ein Subtyp (CMS2) gegebenenfalls in zwei verschiedene Gruppen unterteilt werden muss. Die Tumore weisen verschiedene Mechanismen und Überlebensraten auf. Das Team schlägt weitere Untersuchungen vor, um festzustellen, ob der Subtyp einzigartig ist oder generell charakteristisch für eine Tumorausbreitung. In jedem Fall zeigt das Ergebnis, wozu die Plattform fähig ist: Sie kann nicht nur die bekannten und bereits mit der Krankheit in Verbindung gebrachten Gene, sondern auch alle anderen Daten berücksichtigen, und ermöglicht damit tiefere Einblicke. „Mittels datenwissenschaftlicher Methoden lassen sich Erkenntnisse auch aus normalerweise schwer interpretierbaren komplexen Daten gewinnen“, sagt Akalin. „Man kann Algorithmen mit allen Daten, die zu Tumoren vorliegen, füttern und sie werden sinnvolle Muster finden.“

Das Programm ist in der Lage, in einem Bruchteil der Rechenzeit eine um Größenordnungen höhere Zahl an latenten Faktoren zu lernen

Jonathan Ronen

Das Programm war nicht nur genauer, es arbeitet auch schneller als andere Algorithmen des maschinellen Lernens – nur drei Minuten braucht es, um 100 Muster herauszufiltern. Andere Programme benötigten dafür 20 Minuten oder sogar elf Stunden. „Das Programm ist in der Lage, in einem Bruchteil der Rechenzeit eine um Größenordnungen höhere Zahl an latenten Faktoren zu lernen“, erläutert Jonathan Ronen, Erstautor der Studie. 

Das Team war überrascht davon, wie schnell das System arbeitet, insbesondere weil die Forschenden keine Grafikkarten verwendeten, die die Berechnungen normalerweise beschleunigen. Das zeigt, wie ausgesprochen gut optimiert und effizient der Algorithmus bereits ist, auch wenn das Team weiter daran arbeitet, das System noch zu verbessern. 

Um die Wirkung potenzieller Medikamente zu untersuchen, passte das Team, dem auch Sikander Hayat von der Bayer AG angehörte, das Programm etwas an: Es kann nun auch Zelllinien analysieren, die Tumoren entnommen bzw. im Labor gezüchtet wurden. Auf molekularer Ebene unterscheiden sich Zelllinien jedoch auf vielerlei Weise von echten Tumoren. Um das Ausmaß der Unterschiede abzuschätzen, verglich das Team mithilfe von maui Zelllinien, an denen derzeit Wirkstoffe gegen Darmkrebs getestet werden, mit Zellen aus echten Tumoren. Knapp die Hälfte der Zelllinien war demnach enger mit anderen Zelllinien verwandt als mit echten Tumoren. Nur eine Handvoll Linien ähneln den verschiedenen Arten kolorektaler Karzinome am meisten. 

Die Suche nach neuen Medikamenten verlässt sich zwar längst nicht nur auf Zelllinien, diese Erkenntnis könnte aber dazu beitragen, das volle Potenzial der Zelllinienforschung besser auszuschöpfen. Möglicherweise lässt sie sich auch für andere Arten der Wirkstofferprobung anpasse, die auf genetischen Informationen basiert. 

Nachdem die Deep-Learning-Plattform für Darmkrebs umfassend getestet wurde, könnten damit auch Daten neuer Patient*innen analysiert werden. „Man kann es sich wie eine Suchmaschine vorstellen“, sagt Akalin. Ein Arzt könnte die genetischen Daten eines Erkrankten in maui einspeisen, um die beste Übereinstimmung zu finden und so den Tumor schnell und genau zu klassifizieren. Die Plattform könnte dann Medikamente empfehlen, die bei ähnlichen Tumoren gut angeschlagen haben. So könnte sie voraussagen helfen, ob eine bestimmte Therapie etwas nützt und wie die Überlebensrate sind. 

Derzeit ist dies nur in einem akademischen Umfeld möglich und wenn die Ärzte zuvor alle vorhandenen klinischen Protokolle ausprobiert hatten. Es sei ein langer Weg bis zur Zulassung eines Tests oder Systems für den klinischen Einsatz, sagt Akalin. Das Team wägt mit der Unterstützung des Digital Health Accelerator Programms des Berlin Institute of Health das Potenzial für die Vermarktung des Systems ab. Darüber hinaus entwickeln sie maui für die Anwendung auf andere Krebsarten weiter. 


Quelle: Max-Delbrück-Centrum für Molekulare Medizin

13.06.2022

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Onkologische Datensätze

Klüger im Schwarm: Dezentrale KI gegen Darmkrebs

Ein Forscherteam an der Uniklinik RWTH Aachen hat den erfolgreichen Einsatz von Swarm Learning (SL) in großen, multizentrischen Datensätzen im Bereich Darmkrebs nachgewiesen.

Photo

News • Vom Bild zum Gen

Minitumoren zeigen künftige Therapieoptionen bei Darmkrebs auf

Forscher am DKFZ kombinieren mikroskopische und genetische Hochdurchsatzverfahren mit maschinellem Lernen und zeigen so im Organoid-Modell, welche Medikamente Potenzial gegen Darmkrebs haben.

Photo

News • Bildgebung, KI & Proteomik

'Deep Visual Proteomics' soll Krebsdiagnostik revolutionieren

Ein deutsch-dänisches Forscherteam hat eine Technologie entwickelt, die mit zellspezifischen, protein-basierten Informationen hilft, Krebserkrankungen besser zu analysieren.

Verwandte Produkte

Canon – Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon – Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Canon - Aquilion Exceed LB

Oncology CT

Canon - Aquilion Exceed LB

Canon Medical Systems Europe B.V.
Canon - CT Image Reconstruction

Artificial Intelligence

Canon - CT Image Reconstruction

Canon Medical Systems Europe B.V.
Canon - HIT Automation Platform

Artificial Intelligence

Canon - HIT Automation Platform

Canon Medical Systems Europe B.V.
Canon - Vantage Elan NX Edition

1.5 Tesla

Canon - Vantage Elan NX Edition

Canon Medical Systems Europe B.V.
Fujifilm · REiLI

Artificial Intelligence

Fujifilm · REiLI

FUJIFILM Europe GmbH
Newsletter abonnieren