Nikolaos Koutsouleris sprach bei den KI Lectures über den Einsatz Künstlicher...
Nikolaos Koutsouleris sprach bei den KI Lectures über den Einsatz Künstlicher Intelligenz in der Medizin.

Quelle: LMU

Validierungen erforderlich

Bessere Prognosen durch KI

Im Rahmen der „KI Lectures“ der LMU erklärt Prof. Dr. Nikolaos Koutsouleris, wie Künstliche Intelligenz den medizinischen Prognosen von Menschen zum Teil schon überlegen ist.

Künstliche Intelligenz hat in der Medizin stark an Bedeutung gewonnen. Das liegt vor allem daran, dass immer mehr Patientendaten zur Verfügung stehen. „Die Genetik und Bildgebung erlauben es uns, Krankheiten immer weiter aufzuschlüsseln“, erklärt der Facharzt für Psychiatrie und Psychotherapie, Professor Nikolaos Koutsouleris. Allerdings könnte der Mensch diese vielen Informationen wegen sogenannter limitierender Faktoren wie Personal, Zeit, kognitiver Kapazität und finanziellen Faktoren oft nicht richtig verarbeiten. Die Folge: Fehldiagnosen.

KI kann klinischem Personal dabei helfen, die richtigen diagnostischen Entscheidungen zu treffen und die optimalen Therapiemöglichkeiten für die Patienten zu finden. Koutsouleris berief sich zum Beispiel auf eine Studie zum KI-basierten Brustkrebs-Screening, die Kliniker und Patientinnen aus Großbritannien und den USA untersuchte. Dort zeigte sich, dass KI fast bessere Prognosen liefern konnte als die Untersuchung dieser Menschen durch zwei Kliniker. „Wenn nur ein Kliniker die Patientinnen untersucht hat, war KI sogar überlegen“, betont Koutsouleris. „Außerdem kann diese Technologie Betroffenen als eine Art Frühwarnsystem dienen, um sich rechtzeitig in medizinische Behandlung zu begeben. Dies kann Menschenleben retten.“

Viele Studien nicht ausreichend validiert

Dem KI-Einsatz in der Medizin steht allerdings noch ein langer Weg bevor. Zwar werden in den USA von den Regulierungsbehörden immer mehr KI-Produkte zugelassen. „Aber die Qualität der Studien, die KI-Modelle entwickeln, hat leider nicht zugenommen“, unterstreicht der Facharzt. „Außerdem sind circa 95 Prozent der KI-Modelle in der Medizin nicht extern validiert, der therapeutische Nutzen für Patientinnen und Patienten also nicht nach höchstem wissenschaftlichem Standard bestätigt.“ Die Folge: Aktuell steht in der Praxis nur ein Bruchteil aller Lösungen zur Krankheitsvorhersage tatsächlich zur Verfügung.

Dabei ist es besonders wichtig, dass die trainierten KI-Modelle verallgemeinert und interpretiert werden können, um die Risiken für die Patienten zu reduzieren. Aktuell ist es möglich, Patientinnen und Patienten durch KI in rund drei Viertel aller Fälle in die richtige Risikokategorie einzuteilen. Zusammen mit der menschlichen Intelligenz konnte so sogar in 86 Prozent der Fälle eine richtige Entscheidung getroffen werden. Das reicht aber noch nicht für eine Anwendung in der Praxis. Denn aus zeitlichen, finanziellen und ethischen Gründen kann nicht jeder Mensch im Vorfeld so umfassend untersucht werden wie in manchen Studien.

Forschende arbeiten daher intensiv an der Verallgemeinerbarkeit der Daten und Modelle, um bessere Krankheitsprognosen erstellen zu können. „Wenn die Entwicklung der Algorithmen weiter so fortgesetzt wird wie bisher, könnte ich mir vorstellen, dass KI in zehn bis 15 Jahren in medizinische Entscheidungsprozesse stark eingebunden wird“, prognostiziert Koutsouleris.

Quelle: Ludwig-Maximilians-Universität München

09.11.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Diagnostik & Therapie

KI in der Medizin – heute Hype und Hoffnung, morgen Realität

Kaum ein Tag vergeht, an dem Mediziner, Forscher oder Unternehmen nicht über ein KI-System berichten, das potenziell bösartige Läsionen, gefährliche Herzmuster identifizieren oder Therapien…

Photo

Künstliche Intelligenz

Mensch-Maschine-Kollaborationen sind ein Gewinn

Die Entwicklung Künstlicher Intelligenzen (KI) hat in letzter Zeit einen enormen Hype ausgelöst. In die anfänglich ehrfürchtigen Stimmen mischen sich nun zunehmend auch sorgenvolle, die vor den…

Photo

Anwendungsbeispiele, Szenarien und Erfolgsfaktoren

Erfolgreicher Einsatz medizinischer KI

Künstliche Intelligenz (KI) ist inzwischen routinefähig, so das Statement von Dr. Cord Spreckelsen, Professor am Institut für Medizinische Statistik, Informatik und Datenwissenschaften am…

Verwandte Produkte

Canon – Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon – Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Canon - HIT Automation Platform

Artificial Intelligence

Canon - HIT Automation Platform

Canon Medical Systems Europe B.V.
Canon - Vantage Elan NX Edition

1.5 Tesla

Canon - Vantage Elan NX Edition

Canon Medical Systems Europe B.V.
Fujifilm · REiLI

Artificial Intelligence

Fujifilm · REiLI

FUJIFILM EUROPE GmbH
Agfa - Smart XR

Accessories/ Complementary Systems

Agfa - Smart XR

Agfa HealthCare
Canon - Advanced Intelligent Clear-IQ Engine for CT

Artificial Intelligence

Canon - Advanced Intelligent Clear-IQ Engine for CT

Canon Medical Systems Europe B.V.