Biophysik

Was sich bewegt, wenn rote Blutkörperchen "zappeln"

Wie sich rote Blutkörperchen bewegen, haben Wissenschaftler jetzt erstmals mit physikalischen Methoden nachgewiesen: Schnelle Moleküle in der Umgebung bringen die Zellmembran der Blutkörperchen zum "Zappeln". Wenn sie ausreichend Reaktionszeit haben, sind Blutkörperchen jedoch auch selbst aktiv.

Drei winzige Kugeln halten die roten Blutkörperchen fest, während mit Hilfe...
Drei winzige Kugeln halten die roten Blutkörperchen fest, während mit Hilfe einer vierten Kugel die Bewegungen der Zellmembran (Ausschnitt unten) gemessen werden.
Quelle: Forschungszentrum Jülich

Wissenschaftler haben erstmals mit physikalischen Methoden nachgewiesen, wie sich rote Blutkörperchen bewegen. Ob die Zellen von äußeren Kräften bewegt werden oder aktiv "zappeln", darüber hatte es unter Forschern regelrechte Kämpfe gegeben. Ein internationales Team von Biophysikern aus Münster, Paris und Jülich hat nun bewiesen, dass beides stimmt. Sie haben physikalische Grundsätze und biologische Realität miteinander verknüpft und erkannt: Schnelle Moleküle in der Umgebung bringen die Zellmembran der Blutkörperchen zum Zappeln, aber wenn sie genug Reaktionszeit haben, sind Blutkörperchen auch selbst aktiv. Durch einen Vergleich von innovativen Experimenten mit neuen theoretischen Modellen kann dieser Prozess genau bestimmt werden.

Rote Blutkörperchen (Erythrozyten) dienen dem Transport von Sauerstoff im Blut von Wirbeltieren. Den Grund für ihr ständiges Zappeln haben Physiker bislang einzig in thermischen, also äußeren Kräften gesehen. Biologische Überlegungen lassen dagegen vermuten: Auch innere, durch Proteine verursachte Kräfte sind dafür verantwortlich, dass sich die Zellmembran der Blutkörperchen verformt. "Unsere Ausgangsfrage lautete deshalb: Da Blutkörperchen lebendige Zellen sind, warum sollten nicht auch interne Kräfte in der Zelle auf die Membran wirken?", sagt Dr. Timo Betz von der Westfälischen Wilhelms-Universität Münster (WWU). "Für Biologen ist das eigentlich klar, aber diese Kräfte waren eben nie Teil einer physikalischen Gleichung." Die Forscher haben sogar schon eine Vermutung, welche Kräfte innerhalb der Zelle die Zellmembran verformen. "In der Membran könnten Transportproteine solche Kräfte dadurch erzeugen, dass sie Ionen von einer Seite der Membran auf die andere befördern", sagt Prof. Dr. Gerhard Gompper, Direktor des Jülicher "Institute of Complex Systems".

Timo Betz forscht seit dem Jahr 2015 als Biophysiker an der WWU und ist Leiter der Forschungsgruppe "Mechanics of cellular systems" (Mechanik von Zellsystemen) des Exzellenzclusters "Cells in Motion". Die Forschung zur Aktivität roter Blutkörperchen wurde als internationale Zusammenarbeit zwischen dem renommierten Pariser Institut Curie und dem "Institute of Complex Systems" und "Institute for Advanced Simulation" in Jülich begonnen und jetzt in Münster, Paris und Jülich abgeschlossen. "Dabei war das Zusammenwirken der physikalischen Theorien von Hervé Turlier, der Computersimulationen von Dmitry Fedosov und Thorsten Auth sowie meiner experimentellen Resultate der Schlüssel zum Erfolg", erklärt Timo Betz. Die Kombination von Experiment, Theorie und Computersimulationen sind für neue Einsichten essenziell, weiß auch Gerhard Gompper: "Hochmoderne Simulationen sind heute dazu in der Lage, chemische und biologische Prozesse zu quantifizieren, die sich einer direkten experimentellen Beobachtung entziehen."

Mehr Verständnis für die Zellmechanik

Die Grundlagenforscher möchten mehr über die Mechanik von Blutkörperchen herausfinden und im Detail verstehen, welche Kräfte Zellen bewegen und formen. Gerade im Fall von roten Blutkörperchen ist es wichtig, über ihre Beschaffenheit und inneren Kräfte Bescheid zu wissen. Sie sind nämlich ungewöhnlich weich, elastisch und verformen sich, um auch durch die teilweise winzigen Blutgefäße unseres Körpers hindurchzupassen. Eben weil Blutkörperchen im Normalfall so weich sind, konnten Physiker in vorherigen Studien an ihrer äußeren Membran große thermische Fluktuationen messen. Diese natürlichen Bewegungen von Molekülen werden durch die Umgebungstemperatur bestimmt. Das heißt: Die Zellmembran der Blutkörperchen bewegt sich, weil Moleküle in der Umgebung sie anstoßen. Unter dem Mikroskop sieht das aus, als würden die Blutkörperchen zappeln.

Dies erklärt zwar, warum sich Blutkörperchen bewegen, fragt aber nicht nach möglichen inneren Kräften, die dazu beitragen. Das Forscherteam um Timo Betz hat deshalb die Fluktuationen von Blutkörperchen mit einer neuen Methode genau untersucht: Mit einer sogenannten optischen Pinzette, einem konzentrierten Laserstrahl, haben die Forscher Blutkörperchen in einer Petrischale in die Länge gezogen und analysiert, wie sich die Zelle verhält. Das Ergebnis: Hatten die Blutkörperchen genügend Reaktionszeit, wurden sie selbst aktiv und konnten der Kraft der optischen Pinzette entgegenwirken. Blieb ihnen diese Zeit nicht, waren sie ihrer Umgebung ausgeliefert, und es wurden nur temperaturbedingte Kräfte gemessen.

"Wir können durch den Vergleich beider Messungen genau bestimmen, wie schnell die Zellen selbst aktiv werden und welche Kraft sie erzeugen, um sich zu verformen", erklärt Betz. "Jetzt sind die Biologen dran: Wir Physiker haben nämlich nur eine grobe Idee, welche Proteine der Motor für diese Bewegung sein könnten. Dafür können wir genau vorhersagen, wie schnell und stark sie sind."


Originalpublikation:

Turlier H., Fedosov D. A., Audoly B., Auth T., Gov N. S., Sykes C., Joanny J. F., Gompper G., Betz T. (2016): Red blood cell mechanics violates the fluctuation dissipation theorem. Nature Phys: PUBLISHED ONLINE: 18 JANUARY 2016 | DOI: 10.1038/NPHYS3621


Quelle: Gemeinsame Pressemitteilung der Westfälischen Wilhelms-Universität Münster und des Forschungszentrums Jülich

28.01.2016

Mehr zu den Themen:
Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Transfusionsmedizin

Neues Verfahren macht Blutspenden länger haltbar

Viele Menschen, die an Blut- oder Krebserkrankungen leiden, weisen einen Mangel an Blutplättchen (Thrombozyten) auf und sind deshalb auf Thrombozyten-Konzentrate angewiesen. Diese Konzentrate…

Photo

Blutarmut

Anämie per App erkennen

Bislang konnte nur ein Bluttest darüber Aufschluss geben, ob bei einem Patienten Blutarmut (Anämie) vorliegt. Jetzt haben US-Forscher eine Smartphone-App entwickelt, die diese Diagnose zuverlässig…

Photo

Hämatologie

Empfehlungen zur venösen Blutentnahme am Patienten

Die Präanalytik, hier insbesondere die venöse Blutentnahme, hat einen wesentlichen Einfluss auf die Qualität von labordiagnostischen Ergebnissen. Es wird geschätzt, dass bis zu 75 % aller…

Verwandte Produkte

AB Medical – V-Tube EDTA K2, K3

Blood Cell Counter

AB Medical – V-Tube EDTA K2, K3

AB Medical V-Tube
Greiner – Vacuette EDTA Tube

Blood Cell Counter

Greiner – Vacuette EDTA Tube

Greiner Bio-One
AB Medical – V-Tube Trisodium Citrate 9:1

Hemostaseology

AB Medical – V-Tube Trisodium Citrate 9:1

AB Medical V-Tube
Analyticon Biotechnologogies – Hemolyzer 3 NG / Hemolyzer 5 NG

Blood Cell Counter

Analyticon Biotechnologogies – Hemolyzer 3 NG / Hemolyzer 5 NG

Analyticon Biotechnologies AG
BD Vacutainer UltraTouch Push Button Blood Collection Set

Blood Collection

BD Vacutainer UltraTouch Push Button Blood Collection Set

BD – Becton Dickinson