Prof. Aswin L. Hoffmann mit dem In-beam MRT der heutigen Generation. Mit einem...
Prof. Aswin L. Hoffmann mit dem In-beam MRT der heutigen Generation. Mit einem „In-beam MRT“-Prototyp ist es Hoffmann und seiner Gruppe gelungen, den Protonenstrahl in einem flüssigkeitsgefüllten Phantom zu visualisieren und damit die Reichweite des Protonenstrahls während der Bestrahlung aufzuzeigen.

Bildquelle: Stephan Wiegand/Hochschulmedizin Dresden

News • "In-Beam MRT"

Strahlentherapie: Forscher machen Wegstrecke der Protonen sichtbar

Ziel der Protonen-Strahlentherapie gegen Krebs ist es, möglichst viele Tumorzellen abzutöten und dabei das umliegende, gesunde Gewebe zu schonen. Da es bisher keine direkte Methode gibt, um die Reichweite des Strahls während der Dosisabgabe abzubilden, arbeiten Mediziner der Hochschulmedizin Dresden mit Sicherheitsabständen um den Tumor herum, was die Konformität der Dosisverteilung beeinträchtigt und die Zielgenauigkeit verringert.

Dresdner Wissenschaftlern um Prof. Aswin L. Hoffmann vom Nationalen Zentrum für Strahlenforschung in der Onkologie – OncoRay, das unter anderem vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) betrieben wird, ist es mit einem „In-beam MRT“-Prototyp gelungen, die Wegstrecke des Protonenstrahls in einem flüssigkeitsgefüllten Phantom zu visualisieren und mit dieser Methode die Reichweite des Protonenstrahls während der Bestrahlung aufzuzeigen. Die Ergebnisse publizierte das Team im Journal Proceedings of the National Academy of Science

Im Vergleich zu Photonen besitzen Protonen einen wichtigen Vorteil: sie haben eine definierte Reichweite, also einen Punkt, an dem sie ihre maximale Energie abgeben. Diese Eigenschaft ermöglicht es, in der Protonen-Strahlentherapie die Strahlen im Tumorgewebe stoppen zu lassen, dort eine hohe Bestrahlungsdosis zu applizieren, und gleichzeitig die in das umliegende gesunde Gewebe eingetragene Dosis stark zu reduzieren. Daher wird die Protonen-Strahlentherapie vor allem zur Behandlung von Kindern, aber auch bei Erwachsenen mit Tumoren in der Nähe sehr strahlenempfindlicher Normalgewebe eingesetzt. Zur Kontrolle der Dosisabgabe ist eine direkte Methode notwendig, die die Reichweite des Strahls im Verhältnis zur Anatomie des Patienten während der Dosisabgabe misst und abbildet. Da ein solches Verfahren bislang fehlt, werden bisher Sicherheitssäume um das Tumorgewebe eingebaut, was auch zur Bestrahlung von Normalgeweben führt und die maximal mögliche Dosis im Tumor einschränkt.

Photo
In-Beam MRT der zweiten (heutigen) Generation.

Bildquelle: Stephan Wiegand/Hochschulmedizin Dresden 

Seit 2016 forscht die Gruppe um Hoffmann an der technischen Integration von Magnetresonanztomographie (MRT) und Protonentherapie. Mit einem „In-beam MRT“-Prototyp ist es Hoffmann und seiner Gruppe weltweit erstmalig gelungen, den Protonenstrahl in einem flüssigkeitsgefüllten Phantom zu visualisieren und mit dieser Methode die Reichweite des Protonenstrahls während der Bestrahlung aufzuzeigen. „Das Ergebnis unserer Arbeit kann die Qualitätssicherung in der Protonentherapie maßgeblich verändern. Bislang wurden Messungen häufig indirekt gemacht, nun kann die Abbildung des Protonenstrahls direkt während Dosisapplizierung geschehen“, erklärt Hoffmann. „Mein Traum ist es, dieses Verfahren künftig für die Überwachung von Patientenbehandlungen einsetzen zu können.“ 

In der Studie wurde die Machbarkeit einer Visualisierung des Protonenstrahls in flüssigen Medien verdeutlicht. Wie vorhergesagt, zeigten die während der Bestrahlung aufgenommenen MRT-Bilder, dass die Eindringtiefe mit zunehmender Protonenenergie zunahm und so auch die Stärke des MRT-Signals mit zunehmendem Protonenstrom. „Dieses Ergebnis ist ein wichtiger Schritt in der bildgestützten Protonentherapie“, sagt Prof. Mechthild Krause, Direktorin des OncoRay. „Die Echtzeit-MRT-Bildgebung hat bereits Einzug in die herkömmliche Strahlentherapie mit Photonen gehalten. Professor Hoffmann und sein Team arbeiten am Prototyp eines neuen Bestrahlungsgeräts, das die Echtzeit-MRT-Bildgebung auch in der Protonentherapie etablieren soll.“ 

Die Ergebnisse der Gruppe um Hoffmann geben Hoffnung, dass eine neue Dimension der Behandlung von Krebspatienten ermöglicht wird. Aktuell wird ein neues MRT-Großgerät im OncoRay-Gebäude installiert. Mit diesem wird es erstmals möglich sein, Protonenbestrahlung und Echtzeit-MRT gleichzeitig durchzuführen, und zudem die Richtung und Stärke des Magnetfeldes relativ zum Patienten zu variieren. Hiermit könnte die Protonentherapie in einigen Jahren für bewegliche Tumoren noch präziser eingesetzt werden, um das gesunde Gewebe noch besser zu schonen und das Tumorgewebe mit einer höheren Dosis zu bestrahlen. 


Quelle: Helmholtz-Zentrum Dresden-Rossendorf

21.06.2023

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Hirntumor

Neuer Marker für Therapieansprechen von Gliomen

Hirntumoren sprechen sehr unterschiedlich auf die Behandlung an. Das Therapieansprechen möglichst früh einschätzen zu können, ist jedoch essentiell, um für den Patienten die bestmögliche…

Photo

News • Verringerung der Nebenwirkungen

Miniatur-CERN ermöglicht präzisere Strahlentherapie gegen Hirntumore

Wissenschaftler am CERN testen ein neues Gerät, das bei der Ionenstrahlentherapie von Kopf- und Halstumoren die Krebszellen genauer anvisiert und damit die Nebenwirkungen der Behandlung verringert.

Photo

News • Extrem kurze Bestrahlung

FLASH: Strahlentherapie im Blitzlicht-Verfahren

Eine neue Strahlentherapie-Technik, bei der hohe Strahlendosen in Sekundenschnelle verabreicht werden, schont das umliegende Gewebe und hat ersten Daten zufolge weniger Nebenwirkungen.

Verwandte Produkte

Newsletter abonnieren