Totipotenz

Stammzellforschung: Warum manche Zellen alles können

Eine neue Studie im Fachmagazin ‚Nature Genetics‘ beschreibt eine Gruppe von embryonalen Stammzellen, die sich zu totipotenten Alleskönnern umprogrammieren lassen. Die Autoren vom Münchner Helmholtz Zentrum und der Ludwig-Maximilians-Universität (LMU) konnten zudem den Mechanismus aufklären, wie es dazu kommt.

Quelle: Helmholtz Zentrum München/IES

Der Begriff Totipotenz (von lateinisch totus „ganz“ und potentia „Vermögen, Kraft“) beschreibt die Fähigkeit von Zellen, sich in alle anderen Zelltypen des Körpers zu entwickeln. Das beste Beispiel für so einen Alleskönner ist die befruchtete Eizelle, aus der sich alle weiteren Zellen des entstehenden Lebens bilden. Aber auch noch nach der ersten Teilung im 2-Zell-Stadium bleibt diese Totipotenz erhalten. Die Stammzellen des späteren Embryos hingegen sind lediglich pluripotent, können also viele Zelltypen bilden, aber eben nicht alle.

Hält man allerdings solche embryonalen Stammzellen in Kultur, so entwickelt ein winziger Teil (rund ein Prozent) davon eine Totipotenz, wie sie dem 2-Zell-Stadium entspricht. Im englischen werden diese Zellen 2CLCs (2-cell-like cells) genannt. Herauszufinden was hinter diesem Phänomen steckt, war die Motivation des Teams um Prof. Dr. Maria Elena Torres-Padilla. Sie ist Direktorin des Instituts für Epigenetik und Stammzellen (IES) am Helmholtz Zentrum München und Professorin für Stammzellbiologie an der LMU.

Embryonale Stammzellen mit Farbspiel-Trick abgetrennt

Photo
Fluoreszenzbild muriner embryonaler Stammzellen: Zellkerne sind in Blau, 2CLCs in Grün und Zellen im Übergang in Rot dargestellt.
Quelle: Helmholtz Zentrum München/IES

Dazu wollten die Forscher zunächst die aktiven Gene zwischen embryonalen Stammzellen und 2CLCs vergleichen und benutzten dafür einen Trick: Wenn Zellen im 2CLC-Stadium ankommen, wird sehr oft das Gen MERVL abgelesen. Die Forscher fusionierten nun das MERVL-Gen mit dem Gen für ein grün leuchtendes Protein. Anschließend konnten sie die grün leuchtenden 2CL-Zellen von den nicht leuchtenden „normalen“ embryonalen Stammzellen abtrennen.

Der anschließende Vergleich der beiden Gruppen ergab, dass vor allem das Gen Zscan4 während des Übergangs zur Totipotenz aktiv war. Wie beim Trick zuvor, fusionierte das Team das Zscan4-Gen mit dem Gen für ein rotes Protein. Beobachteten sie die Zellen unter dem Mikroskop, färbten sich die betreffenden Zellen zunächst rot und dann grün. „Diese Beobachtungen zeigten uns, dass Zellen offensichtlich durch eine Übergangsphase müssen, bevor sie im 2CLC-Stadium ankommen“, erklärt Torres-Padilla. „Als nächstes wollten wir den treibenden Mechanismus dahinter aufdecken.“ Dazu wählte das Team einen sogenannten siRNA Screen: Mit dieser Methode ist es möglich, mehr als 1000 Gene gezielt zu beeinträchtigen, um zu sehen wie sich das auf die Entwicklung von 2CL-Zellen auswirkt. “Die Ergebnisse waren außergewöhnlich”, beschreibt IES-Wissenschaftler Dr. Xavier Gaume, gemeinsam mit Diego Rodriguez-Terrones, Erstautor der Studie. „Wir konnten zahlreiche Proteine identifizieren, die die Entstehung von 2CLCs regulieren.“ Besonders häufig entstanden 2CLCs, je seltener der Proteinkomplex Ep400/Tip60 vorlag. Da der Faktor an der Verpackung von Chromatin beteiligt ist, wollen die Forscher nun herausfinden, ob eine Öffnung des Chromatins grundsätzlich mit einer Totipotenz in Verbindung steht.


Quelle: Helmholtz Zentrum München

19.12.2017

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Aus Stammzellen

Organoide: Herzen aus der Petrischale rücken näher

Wissenschaftler der Gladstone Institutes haben herausgefunden, wie sich eine neue Art von Organoid züchten lässt, der nachahmt, wie Darm- und Herzgewebe kooperativ aus Stammzellen entstehen.

Photo

Podiumsdiskussion

Zelltherapien mit Stammzellen? Aktuelle Forschung und Zukunftsaussichten

Die Erforschung von Stammzellen liefert wichtige Erkenntnisse für die Medizin der Zukunft: Wissenschaftler wollen Zelltherapien entwickeln, mit denen bislang unheilbare Krankheiten wie Diabetes,…

Photo

"Gerüstfreie" Methode

Forscher machen Knorpel aus Stammzellen

Forscher der University of Southampton haben dank einer neuen Technik aus Stammzellen menschliches Knorpelgewebe entwickelt. Das könnte eine dringend benötigte neue Therapie für Menschen mit…

Verwandte Produkte

Sarstedt – Low DNA Binding Micro Tubes

Research Use Only

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Mass Spectrometry

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Shimadzu – LCMS-8060NX (RUO)

Mass Spectrometry

Shimadzu – LCMS-8060NX (RUO)

Shimadzu Europa GmbH
Shimadzu – MALDImini-1

Research Use Only

Shimadzu – MALDImini-1

Shimadzu Europa GmbH
Newsletter abonnieren