Pauline Zamprogno im Organs-on-Chip Culture Labor des ARTORG Center

 © Adrian Moser

Von Grundlagenforschung bis Präzisionsmedizin

Neues "Lung on a chip"-Modell öffnet Forschungswege

Forschende der Universität Bern und des Inselspitals, Universitätsspital Bern haben ein Lungen-Modell der zweiten Generation mit lebensgroßen Lungenbläschen in einer rein biologischen, dehnbaren Membran entwickelt.

Das neue Modell bildet das Lungengewebe viel lebensnäher nach als bisherige Lungen-auf-Chip. Dies eröffnet neue Möglichkeiten für die Grundlagenforschung, die Erforschung von Lungenerkrankungen, das Testen von Medikamenten und die Präzisionsmedizin.

Die Forscher veröffentlichten ihre Erkenntnisse jetzt im Fachjournal Nature Communications Biology.

Photo
Eingefärbte Patientenzellen, die auf einer "Lunge auf Chip" der zweiten Generation kultiviert wurden

© Pauline Zamprogno, ARTORG Center for Biological Engineering Research

Die Lunge ist aus rund 400 Millionen Lungenbläschen aufgebaut, die für den Gasaustausch zwischen Blut und Luft zuständig sind. Sie spielt eine Schlüsselrolle bei der Sauerstoffversorgung aller Organe. Aufgrund ihrer komplexen Struktur, zellulären Zusammensetzung und dynamischen Mikroumgebung ist sie in-vitro nur schwer nachzubilden. Ein spezialisiertes Labor des ARTORG Center for Biomedical Engineering Research der Universität Bern unter der Leitung von Olivier Guenat befasst sich seit über zehn Jahren mit der Entwicklung hochspezialisierter In-vitro-Modelle, den sogenannten Organs-on-Chip. Der Schwerpunkt liegt dabei auf der Modellierung der Lunge und ihrer Erkrankungen. Nach einem ersten erfolgreichen Lunge-auf-Chip-System, das wesentliche Merkmale der Lunge aufweist, hat das Organs-on-Chip (OOC) Labor des ARTORG Centers nun in Zusammenarbeit mit dem Helmholtz-Zentrum für Infektionsforschung München und den Universitätskliniken für Thoraxchirurgie und Pneumologie des Inselspitals eine rein biologische Lunge-auf-Chip der nächsten Generation entwickelt.

portrait of pauline zamprogno
Dr. Pauline Zamprogno, PostDoc Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, Universität Bern

© zvg

Pauline Zamprogno, die das neue Modell für ihre Doktorarbeit am OOC entwickelt hat, fasst dessen Eigenschaften zusammen: "Die neue Lunge-auf-Chip reproduziert eine Ansammlung von Lungenbläschen, die mit je 250 Mikrometer Durchmesser etwa lebensgroß sind. Das System besteht aus einer dünnen, dehnbaren Membran aus Molekülen, die natürlicherweise in der Lunge vorkommen: Kollagen und Elastin. Die Membran ist stabil, kann wochenlang beidseitig kultiviert werden, ist biologisch abbaubar und ihre Elastizität ermöglicht das Simulieren von Atembewegungen durch mechanisches Dehnen der Zellen."

Im Gegensatz zur ersten Generation, die bereits vom Team um Olivier Guenat entwickelt wurde, reproduziert das weiterentwickelte System wichtige Aspekte der sogenannten extrazellulären Matrix der Lunge, also dem Gewebeanteil, der zwischen den Zellen liegt: Ihre Zusammensetzung (Zellträger aus Proteinen), ihre Struktur (Anordnung der Lungenbläschen und Faserstruktur) und ihre Eigenschaften (biologische Abbaubarkeit – ein wichtiger Aspekt zur Untersuchung veränderter Luft-Blut-Barrieren bei Lungenerkrankungen wie idiopathischer Lungenfibrose (IPF) oder chronisch-obstruktiver Lungenerkrankung (COPD). Darüber hinaus ist der Herstellungsprozess weniger aufwändig als der einer dehnbaren porösen Membran der ersten Generation der Lunge-auf-Chip.

Die Lunge-auf-Chip der zweiten Generation kann sowohl mit gesunden als auch mit erkrankten Lungenbläschen-Zellen besiedelt werden

Ralph Schmid

Die Zellen, die auf dem neuen Chip für die Forschung kultiviert werden sollen, werden derzeit von Krebspatienten gewonnen, die sich an der Universitätsklinik für Thoraxchirurgie des Inselspitals einer Lungenresektion – einer operativen Entfernung von Gewebeteilen der Lunge – unterziehen. Klinikdirektor Ralph Schmid sieht in dem System einen doppelten Vorteil: "Die Lunge-auf-Chip der zweiten Generation kann sowohl mit gesunden als auch mit erkrankten Lungenbläschen-Zellen besiedelt werden. Damit erhalten Klinikerinnen und Kliniker sowohl ein besseres Verständnis der Physiologie der Lunge als auch ein wirksames Werkzeug zum Screening möglicher neuer Wirkstoffe und potenziell auch für die Präzisionsmedizin, um genau die Therapie zu identifizieren, die einer bestimmten Patientin oder einem bestimmten Patienten am besten helfen kann."

"Die Anwendungsmöglichkeiten für solche Membrane sind vielfältig und reichen von grundlagenwissenschaftlichen Untersuchungen zum besseren Verständnis von Lungenphysiologie und -pathologie über die Identifizierung neuer Signalwege bis hin zur Entwicklung neuer Therapien", sagt Thomas Geiser, Direktor der Universitätsklinik für Pneumologie am Inselspital und Direktor für Lehre und Forschung der Insel Gruppe.

portrait of Olivier Guenat
Prof. Dr. Olivier Guenat, Leiter Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, Universität Bern

© Andres Burkhard / ARTORG Center for Biomedical Engineering

Ein weiterer Vorteil der neuen Lunge-auf-Chip ist ihr Potenzial, pneumologische Forschung auf der Basis von Tiermodellen zu reduzieren. "Zahlreiche vielversprechende Wirkstoffe, die in präklinischen Modellen an Nagetieren erfolgreich getestet wurden, sind beim Test am Menschen gescheitert, weil es Unterschiede zwischen den Spezies und in der Ausprägung einer Lungenerkrankung gibt", erklärt Olivier Guenat. "Deshalb streben wir langfristig an, Tierversuche zu reduzieren und mehr patientenrelevante Systeme für das Testen von Wirkstoffen bereitzustellen, mit der Möglichkeit, diese sogar für einzelne Patientinnen und Patienten 'maßzuschneidern'."

Die neue biologische Lunge-auf-Chip wird von Pauline Zamprogno und ihrem Team im Rahmen eines vom 3RCC Kompetenzzentrum Schweiz (3R steht für das Prinzip 'replace, reduce and refine' von Tierversuchen) geförderten Forschungsprojekts weiterentwickelt. Hierbei soll eine Lunge mit IPF nachgebildet werden, einer chronischen Erkrankung, die zu einer fortschreitenden Vernarbung des Lungengewebes führt. "Bislang haben wir eine gesunde Blut-Luft-Schranke entwickelt. Jetzt ist es an der Zeit, damit eine echte biologische Fragestellung zu untersuchen", sagt Zamprogno.


Quelle: Universität Bern

08.02.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

„Swarm Learning“

KI mit Schwarm-Intelligenz analysiert medizinische Daten

Gemeinschaften profitieren vom Wissen und Erfahrungsaustausch ihrer Mitglieder. Nach einem ähnlichen Prinzip – „Swarm Learning“ genannt – hat ein internationales Forschungsteam Algorithmen…

Photo

Individuelle Arzneimittel

Neue Technik 'druckt' Medikamente in der richtigen Dosis

Damit Arzneimittel ihre maximale Wirkung entfalten und möglichst wenig Nebenwirkungen auftreten, muss die Dosierung auf jeden Einzelpatienten angepasst werden. Je nach Verabreichungsform – z.B.…

Photo

Forschungskooperation

"Zellen der Zukunft" könnten Lungeninfektionen heilen

Den Körper mit Zellen heilen zu können – dieses ehrgeizige Ziel verfolgen Wissenschaftler der Medizinischen Hochschule Hannover (MHH). Professor Dr. Nico Lachmann und Dr. Robert Zweigerdt haben…

Verwandte Produkte

Lifotronic - FA-160 Immunofluorescence Analyzer

Other

Lifotronic - FA-160 Immunofluorescence Analyzer

Lifotronic Technology Co., Ltd
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Newsletter abonnieren