Prinzipien und Prozesse, welche die computergestützte Verarbeitung...
Prinzipien und Prozesse, welche die computergestützte Verarbeitung natürlicher Sprache steuern, werden heute zunehmend in der Proteinforschung genutzt.

Quelle: UBT / Arbeitsgruppe Proteindesign.

News • Natural Language Processing

Künstliche Intelligenz ermöglicht Design neuartiger Proteine

Künstliche Intelligenz (KI) hat neue Möglichkeiten für das Design von Proteinen geschaffen, die zur Lösung medizinischer oder ökologischer Probleme maßgeschneidert sind. Ein Forschungsteam der Universität Bayreuth hat jetzt ein computerbasiertes Modell zur Verarbeitung natürlicher Sprachen erfolgreich auf die Proteinforschung angewendet. Das Modell ProtGPT2 entwirft völlig selbständig neue Proteine, die zu stabilen Faltungen fähig sind und definierte Funktionen in größeren molekularen Zusammenhängen übernehmen könnten.

Natürliche Sprachen und Proteine ähneln sich in ihrem Aufbau: Aminosäuren ordnen sich in einer Vielzahl von Kombinationen zu Strukturen an, die im lebenden Organismus spezifische Funktionen haben – ähnlich wie Wörter in unterschiedlichen Kombinationen Sätze bilden, die bestimmte Sachverhalte ausdrücken. In den letzten Jahren wurden daher zahlreiche Ansätze entwickelt, um Prinzipien und Prozesse, welche die computergestützte Verarbeitung natürlicher Sprache steuern, in der Proteinforschung zu nutzen. „Die Verarbeitung natürlicher Sprache – das Natural Language Processing – hat aufgrund neuer KI-Technologien außerordentliche Fortschritte gemacht. Modelle der Sprachverarbeitung versetzen Maschinen heute in die Lage, sinnvolle Sätze nicht nur zu verstehen, sondern auch selbst zu erzeugen. Ein solches Modell war der Ausgangspunkt unserer Forschungsarbeiten. Mit detaillierten Informationen, die etwa 50 Millionen Sequenzen natürlicher Proteine betreffen, hat meine Mitarbeiterin Noelia Ferruz das Modell trainiert und in die Lage versetzt, selbstständig Proteinsequenzen zu erzeugen. Es versteht jetzt die Sprache der Proteine und kann sie kreativ anwenden. Diese kreativen Anwendungen folgen, wie wir festgestellt haben, den grundlegenden Bauprinzipien natürlicher Proteine“, sagt Prof. Dr. Birte Höcker, Leiterin der Arbeitsgruppe für Proteindesign an der Universität Bayreuth.

Das auf die Proteinentwicklung übertragene Sprachverarbeitungsmodell trägt den Namen „ProtGPT2“. Es kann nun genutzt werden, um Proteine zu entwerfen, die durch Faltung stabile Strukturen annehmen und in diesem Zustand dauerhaft funktionstüchtig sind. Zudem haben die Bayreuther Biochemiker*innen durch komplexe Untersuchungen herausgefunden, dass das Modell sogar Proteine kreieren kann, die in der Natur nicht vorkommen und in der Geschichte der Evolution womöglich noch nie existiert haben. Diese Einblicke in die unermesslich weite Welt möglicher Proteine öffnen die Tür zu einer innovativen Forschung, die bisher unbekannte Proteine auf neuartige Weise erzeugt. ProtGPT2 hat überdies einen weiteren Vorteil: Die meisten Proteine, die bisher de novo entworfen wurden, haben idealisierte Strukturen. Bevor sie angewendet werden können, sind in der Regel aufwändige Funktionalisierungsprozesse erforderlich, beispielsweise das Einfügen von Erweiterungen und Hohlräumen. Erst aufgrund dieser Funktionalisierung können sie mit ihrer Umgebung interagieren und in größeren Systemzusammenhängen genau definierte Funktionen übernehmen. ProtGPT2 erzeugt dagegen Proteine, die von Hause aus derart ausdifferenzierte Strukturen besitzen und so in ihrer jeweiligen Umgebung bereits einsatzfähig sind.

„Unser neues Modell ist ein weiterer eindrucksvoller Beleg für die systemische Affinität von Proteindesign und der Verarbeitung natürlicher Sprache. Künstliche Intelligenz eröffnet hochinteressante und vielversprechende Möglichkeiten, Methoden der Sprachverarbeitung für die Herstellung maßgeschneiderter Proteine zu nutzen. An der Universität Bayreuth wollen wir auf diesem Weg dazu beitragen, innovative Lösungen für biomedizinische, pharmazeutische oder ökologische Probleme zu entwickeln“, sagt Höcker.

In „Nature Communications“ werden das Modell und seine Potenziale wissenschaftlich beschrieben.

Quelle: Universität Bayreuth

13.08.2022

Mehr zu den Themen:
Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • KI-basierte Gewebeanalyse

Morphometrie der nächsten Generation soll Pathologie revolutionieren

Eine neu KI-basierte Methodik kann histologische Gewebeproben objektivierbar und quantitativ in sehr großer Anzahl auswerten. Dieser „Pathomics“-Ansatz könnte die Pathologie revolutionieren.

Photo

News • ChatGPT

KI-generierte Abstracts führen Experten hinters Licht

Von einem Chatbot mit künstlicher Intelligenz (KI) verfasste Zusammenfassungen von Forschungsarbeiten wirken so echt, dass sie nicht von Wissenschaftlern erkannt werden, zeigt eine neue Studie.

Photo

News • Technologie zur Früherkennung

3D-Spatial-Omics zeigt Frühstadien von Krankheiten

Eine neue Technologie namens DISCO-MS nutzt Robotertechnologien, um Proteomikdaten von „kranken“ Zellen zu erhalten, die in einem frühen Stadium der Krankheit genau identifiziert werden.

Verwandte Produkte

3DQuorum SmartSlices

Artificial Intelligence

Hologic · 3DQuorum SmartSlices

Hologic, Inc.
Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon · Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
AI-Rad Companion

Artificial Intelligence

Siemens Healthineers · AI-Rad Companion

Siemens Healthcare GmbH
Aquilion Exceed LB

Oncology CT

Canon · Aquilion Exceed LB

Canon Medical Systems Europe B.V.
Aquilion Lightning

20 to 64 Slices

Canon · Aquilion Lightning

Canon Medical Systems Europe B.V.
Newsletter abonnieren