Wie kleine Stecknadelköpfe sehen die gehirnähnlichen Zellkulturen in der...
Wie kleine Stecknadelköpfe sehen die gehirnähnlichen Zellkulturen in der Petrischale aus.

Quelle: Axel Griesch für Max-Planck-Gesellschaft

News • Gehirnzellen

Gehirn-Organoide aus Labor liefern neue Therapieansätze

Heterotopie ist eine Erbkrankheit, bei der die Wanderung von Neuronen während der Gehirnentwicklung gestört ist. Dadurch ist die äußerste Schicht des Gehirns, der Kortex, deformiert. Wissenschaftler des Max-Planck-Instituts für Psychiatrie (MPI) konnten im Labor diese Entwicklungsstörung nachbilden, die zu geistiger Behinderung und Epilepsie führen kann.

Die Forscher verwendeten dazu sogenannte Gehirn-Organoide, bei denen sich menschliche Zellen in der Petrischale zu hirnähnlichen Strukturen formieren. Sie beobachteten, dass sich die in den Organoiden enthaltenen Zellen von Patienten in Aussehen und Wanderverhalten von denen Gesunder unterschieden. Insbesondere haben die Forscher einen kompletten Satz molekularer Signaturen entdeckt, der für die krankhaft veränderten Zellen spezifisch ist. Dadurch erhielten sie wertvolle Ansätze und Ideen für Therapiemöglichkeiten.

Die Forschungsgruppe von Silvia Cappello am Max-Planck-Institut setzte in enger Zusammenarbeit mit anderen Forschern, vor allem mit dem Labor von Barbara Treutlein am Max-Planck-Institut für evolutionäre Anthropologie in Leipzig, Gehirn-Organoide ein, um entwicklungsbedingte Fehlfunktionen des Gehirns nachzubilden. Diese Modelle für Gehirnentwicklung haben die Neurowissenschaften revolutioniert, da sie sehr realitätsnah nachstellen, wie sich Neuronen entwickeln. Während der Reifung des menschlichen Gehirns wachsen und verbinden sich neue Zellen in einer ganz bestimmten Reihenfolge.

Die Gehirn-Organoide dieser Studie wurden aus Hautzellen von Patienten entwickelt. Forschungsleiterin Silvia Cappello erklärt: „Wir haben die Hautzellen in induzierte pluripotente Stammzellen umprogrammiert. Mit diesen Stammzellen können wir Hirnzellen erzeugen, die sich zu vielen verschiedenen Typen entwickeln können.“ Diese Zellen verhalten sich wie im menschlichen Gehirn. Die unterschiedlichen Typen und ihre Wechselwirkungen können dann unter dem Mikroskop genau untersucht werden. Cappello fügt hinzu: „Gehirn-Organoide geben uns ein viel genaueres Bild davon, wie Hirnzellen funktionieren als herkömmliche Zellkulturen. Sie dienen uns dadurch als vereinfachtes Modell für neurologische Erkrankungen beim Menschen.“

In Gehirn-Organoiden lässt sich die Wanderung von Neuronen während der...
In Gehirn-Organoiden lässt sich die Wanderung von Neuronen während der Gehirnentwicklung in der Petri-Schale beobachten.

Quelle. Axel Griesch für Max-Planck-Gesellschaft

Grenzen von Tierversuchen

Wertvolle Einblicke in die Funktionsweise des Gehirns erhalten Wissenschaftler in der Regel durch ihre Arbeit mit Tiermodellen. Mit Tierversuchen stoßen sie jedoch an ihre Grenzen, da die Gehirne von Tieren einen Entwicklungsprozess durchlaufen, der sich von dem des Menschen grundlegend unterscheidet. Untersuchungen am menschlichen Gehirn sind naturgemäß schwierig; dafür ist man auf Organspenden und Zellkulturverfahren angewiesen. Das macht den Bedarf nach neuen Verfahren zur Abbildung von Erkrankungen beim Menschen groß.  

Die Entwicklung des menschlichen Gehirns in vitro nachzubilden, birgt deshalb enormes Potenzial, um aus Forschungsergebnissen Therapien zu entwickeln. Da ein Gehirn-Organoid aus den Zellen eines einzelnen Menschen entsteht, können Wissenschaftler genau erforschen, was bei genau diesem Patienten im Gehirn passiert. Auf diese Weise haben Gehirn-Organoide Forschern bereits geholfen, das Zikavirus oder die Alzheimer-Krankheit und Autismus besser zu verstehen. “Gehirn-Organoide sind sehr vielversprechend für die Entwicklung neuer Behandlungsmethoden und ihre Validierung ist ein extrem wichtiger Schritt hin zum Verständnis von Entwicklungsstörungen und neurologischen Störungen,“ stelltCappello abschließend fest.

Quelle: Max-Planck-Institut für Psychiatrie

13.03.2019

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Neuartige Immunzellen

Mehr Sicherheit für Medikamente

MHH-Professor erhält „ERC Proof of Concept Grant“, um die Sicherheit von Arzneimittel zu revolutionieren. Die von ihm entwickelte Methode soll Millionen Menschen zu Gute kommen.

Photo

News • Neurotoxische Effekte untersucht

CAR-T-Zelltherapie: Mechanismen neurologischer Nebenwirkungen entdeckt

CAR-T-Zelltherapie zeigt Erfolge bei bislang schwer behandelbaren Blutkrebserkrankungen. Allerdings kann sie auch zu schweren Nebenwirkungen im Nervensystem führen, wie eine neue Studie zeigt.

Photo

News • Neurologische Bewegungsstörung

Dystonie: Linderung durch tiefe Hirnstimulation

Forscher der Charité haben neue Erkenntnisse zur Behandlung der Dystonie gewonnen: sie konnten nachweisen, dass die Stimulation bestimmter Netzwerke im Gehirn Beschwerden lindern kann.

Verwandte Produkte

Shimadzu – LCMS-8060NX CL (IVD) / LCMS-8060 NX (RUO)

Mass Spectrometry

Shimadzu – LCMS-8060NX CL (IVD) / LCMS-8060 NX (RUO)

Shimadzu Europa GmbH
Alsachim - Dosimmune immunosupressant Alsachim – kit (CE-IVD or RUO)

Clinical Chemistry

Alsachim - Dosimmune immunosupressant Alsachim – kit (CE-IVD or RUO)

Alsachim, a Shimadzu Group Company
Alsachim – Dosimyco immunosupressant reagent kit (RUO)

Clinical Chemistry

Alsachim – Dosimyco immunosupressant reagent kit (RUO)

Alsachim, a Shimadzu Group Company
Alsachim – Dosinaco anticoagulant reagent kit (RUO)

Clinical Chemistry

Alsachim – Dosinaco anticoagulant reagent kit (RUO)

Alsachim, a Shimadzu Group Company
ASP Lab Automation – SortPro Sample sorter

Sample Processing

ASP Lab Automation – SortPro Sample sorter

ASP Lab Automation AG
Beckman Coulter – Access 2 Immunoassay System

Immunoassays

Beckman Coulter – Access 2 Immunoassay System

Beckman Coulter Diagnostics
Newsletter abonnieren