Wie „sprechen“ Nervenzellen und Blutgefäße miteinander?

Erst in den letzten zehn Jahren haben Forscher entdeckt, dass das Wachstum neuronaler und vaskulärer Netzwerke von denselben Molekülen gesteuert wird. Professor Amparo Acker-Palmer wird nun erstmals die Kommunikation zwischen Nervenzellen und Blutgefäßzellen im Gehirn untersuchen. Dabei erhofft sie auch neue Erkenntnisse für die Therapie von Demenz und psychischen Erkrankungen. Der Europäische Forschungsrat fördert das Vorhaben mit einem Advanced Investigator Grant in Höhe von 2,5 Millionen Euro in den nächsten fünf Jahren.

Das Zusammenspiel zwischen Neuronen (grün), Astrozyten (blau) und...
Das Zusammenspiel zwischen Neuronen (grün), Astrozyten (blau) und Blutgefäßen (rot) im Mäusehirn. Die Zellpopulationen treten in einem spezifischen Muster auf und interagieren mit den Nachbarzellen.
Quelle: GU

„Am interessantesten ist das Zusammenspiel von Nervenzellen und Blutgefäßen in der Hirnrinde. Bisher wissen wir wenig darüber, wie Neuronen mit den Endothelzellen im Inneren der Blutgefäße kommunizieren, damit sich das Gehirn richtig entwickeln und funktionieren kann“, erklärt Acker-Palmer. Sie will darum zunächst das schichtweise Wachstum der Gehirnrinde während der embryonalen Entwicklung untersuchen. Denn hier wachsen die neuronalen Strukturen von innen nach außen, während die Blutgefäße sich in umgekehrter Richtung von der Oberfläche her nach innen ausbreiten. Da beide Wachstumsprozesse aufeinander abgestimmt sind, vermutet Acker-Palmer, dass sie von denselben Signalmolekülen gesteuert werden. Acker-Palmer möchte nun untersuchen, inwiefern eine fehlerhafte Abstimmung dieser Signalkaskaden zu kognitiven Störungen beitragen kann.

Als Modellorganismen verwendet ihre Arbeitsgruppe genetisch veränderte Mäuse und Zebrafische. Letzte sind durchsichtig, so dass sie lebend mit modernsten Licht-Mikroskopen untersucht werden können. Hochauflösende Elektronenmikroskope sollen außerdem dazu eingesetzt werden, die besonders engen Verbindungen zwischen Endothelzellen der Blutkapillaren und der Gliazellen an der Blut-Hirn-Schranke zu untersuchen. Gliazellen sind Nervenzellen, die sich um die Blutkapillaren wickeln und verhindern, dass schädliche Substanzen aus dem Blut in die Hirnzellen eindringen. Acker-Palmer möchte mit ihrer Arbeitsgruppe die molekularen Signalwege an dieser entscheidenden Stelle entschlüsseln. „Wenn es uns gelingt, in den Mechanismus einzugreifen, um die Blut-Hirn-Schranke zeitweise zu öffnen, können wir Wirkstoffe einschleusen und somit neue Ansatzpunkte zur Therapie von Demenz oder psychiatrischen Erkrankungen finden“, so die Neurobiologin.

PROFIL: Amparo Acker-Palmer, geboren 1968 in Sueca, Valencia, Spanien, studierte Biologie und Biochemie an der Universität von Valencia, wo sie 1996 promovierte. Danach ging sie als Postdoktorandin an das Europäische Molekularbiologische Labor (EMBL) nach Heidelberg. 2001 wechselte sie als Leiterin einer selbstständigen Nachwuchsgruppe für Signaltransduktion an das Max-Planck-Institut für Neurobiologie nach Martinsried bei München. 2007 wurde sie an das Exzellenzzentrum „Makromolekulare Komplexe“ der Goethe-Universität Frankfurt berufen. Seit 2011 ist Acker-Palmer Leiterin der Abteilung Molekulare und Zelluläre Neurobiologie beim Fachbereich Biowissenschaften der Goethe Universität Frankfurt. 2012 erhielt sie ein Gutenberg Forschungskolleg(GFK)-Fellowship von der Johannes-Gutenberg-Universität Mainz und ist eine der leitenden Wissenschaftlerinnen des Rhine-Main Neuroscience Network (rmn2). 2014 wurde Acker-Palmer zum Max-Planck-Fellow am MPI für Hirnforschung in Frankfurt berufen. Amparo Acker-Palmer ist Mitglied der Deutschen Akademie für Naturforscher Leopoldina und der Academia Europaea. 2010 wurde sie mit dem Paul Ehrlich-Nachwuchspreis ausgezeichnet.

Quelle: Goethe-Universität Frankfurt am Main

13.05.2015

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Sonate KV488

Musik gegen Epilepsie? Forscher widerlegen "Mozart-Effekt"

Eine neue Studie von Psychologen der Universität Wien zeigt, dass es keine wissenschaftlichen Beweise für die angeblich positive Wirkung von Mozarts Sonate KV448 auf Epilepsie gibt.

Photo

News • Erinnerungen verdrängen

Aktives Unterdrücken lässt negative Erlebnisse verblassen

Unterdrückt man aktiv eine Erinnerung und ruft sie anschließend erneut ab, treten die Bilder weniger lebhaft in Erscheinung als zuvor.

Photo

News • Hirn-Stimulation "on demand"

Forscher behandeln Depressionen per Hirn-Implantat

Forscher der University of California, San Francisco (UCSF) haben ein Hirnimplantat entwickelt, mit dem sie Depressionen erfolgreich behandeln konnten. Laut den Wissenschaftlern könnten gezielte…

Verwandte Produkte

Newsletter abonnieren