Der energieeffiziente Algorithmus der TU Graz-Forscher wird in vom Gehirn...
Der energieeffiziente Algorithmus der TU Graz-Forscher wird in vom Gehirn inspirierte Rechensysteme implementiert, wie dem Spike-basierten SpiNNaker. SpiNNaker ist Teil der Forschungsinfrastruktur EBRAINS des Human Brain Projects,.

Quelle: Forschungszentrum Jülich

News • Neuronale Netze

Neuer Ansatz für energieeffiziente KI-Anwendungen

Forscher der TU Graz zeigen eine neue Design-Methode für besonders energieschonende künstliche neuronale Netzwerke, die mit extrem wenigen Signalen auskommen, und – ähnlich wie der Morse-Code – auch den Pausen zwischen den Signalen eine Bedeutung zuweisen.

Die meisten neuen Errungenschaften der Künstlichen Intelligenz (KI) erfordern sehr große neuronale Netze. Sie bestehen aus hunderten Millionen von Neuronen, die in mehreren hundert Schichten angeordnet sind, also sehr „tiefe“ Netzstrukturen haben. Diese großen, tiefen neuronalen Netze verbrauchen im Computer sehr viel Energie. Besonders energieintensiv sind jene neuronalen Netze, die in der Bildklassifizierung (z. B. Gesichts- und Objekterkennung) eingesetzt werden, da sie in jedem Zeittakt sehr viele Zahlenwerte mit großer Genauigkeit von einer Neuronenschicht zur nächsten senden müssen.

Der Informatiker Wolfgang Maass hat gemeinsam mit seinem Doktoranden Christoph Stöckl nun eine Design-Methode für künstliche neuronale Netzwerke gefunden, die den Weg zu einer energieeffizienten leistungsfähigen KI-Hardware (z. B. Chips für Fahrassistenzsysteme, Smartphones und anderen Mobile Devices) ebnet. Die beiden Forscher des Instituts für Grundlagen der Informationsverarbeitung der TU Graz haben künstliche neuronale Netzwerke in Computer-Simulationen zur Bildklassifizierung derart optimiert, dass die Neuronen – ähnlich wie Neurone im Gehirn – nur relativ selten Signale aussenden müssen und eben diese Signale sehr einfach sind.

Die nachgewiesene Klassifizierungsgenauigkeit von Bildern mit diesem Design kommt trotzdem sehr nahe an den aktuellen Stand der Technik derzeitiger Bildklassifizierungstools heran.

Informationsverarbeitung im Gehirn als Vorbild

Maass und Stöckl ließen sich dabei von der Arbeitsweise des menschlichen Gehirns inspirieren. Dieses verarbeitet mehrere Billionen Rechenoperationen in der Sekunde, benötigt dafür aber nur ca. 20 Watt. Möglich wird dieser geringe Energieverbrauch durch die zwischenneuronale Kommunikation mittels sehr einfacher elektrischer Impulse, sogenannter Spikes. Die Information wird dabei nicht nur durch die Anzahl der Spikes, sondern auch durch ihre zeitlichen variablen Muster kodiert. „Man kann sich das vorstellen wie einen Morse-Code. Auch die Pausen zwischen den Signalen übertragen Informationen“, erklärt Maass.

Dieser Artikel könnte Sie auch interessieren

Konvertierungsmethode für trainierte künstliche neuronale Netzwerke

Dass eine Spike-basierte Hardware den Energieverbrauch von Anwendungen mit neuronalen Netzen reduzieren kann, ist nicht neu. Dies konnte aber bisher nicht für die sehr tiefen und großen neuronalen Netze realisiert werden die man für wirklich gute Bildklassifikation benötigt.

In der Design-Methode von Maass und Stöckl kommt es nun bei der Informationsübertagung nicht nur darauf an, wie viele Spikes ein Neuron aussendet, sondern auch, wann das Neuron diese Spikes aussendet. Die Zeit bzw. die zeitlichen Abstände zwischen den Spikes kodieren sich praktisch selbst und können daher sehr viel zusätzliche Information übertragen. „Wir zeigen, dass mit wenigen Spikes – in unseren Simulationen sind es durchschnittlich zwei – genauso viel Informationen zwischen den Prozessoren vermittelt werden können wie in energieaufwendiger Hardware“, so Maass.

Mit den Ergebnissen liefern die beiden Informatiker der TU Graz einen neuen Ansatz für Hardware, die wenige Spikes und damit einen geringen Energieverbrauch mit State-of-the-Art-Performances von KI-Anwendungen verbindet. Die Ergebnisse könnten die Entwicklung von energieeffizienter KI-Anwendungen drastisch beschleunigen und werden unter anderem im Journal Nature Machine Intelligence beschrieben.

Quelle: TU Graz

22.03.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Premiere

Ähnlichkeit zwischen Schizophrenie und Demenz entdeckt

Forscher verglichen erstmals Schizophrenie und frontotemporale Demenz, Erkrankungen, die in den frontalen und Schläfenlappen-Regionen des Gehirns verortet werden.

Photo

News • Neuroradiologie

KI-Assistent detektiert Aneurysmen vollautomatisch

Für die Differenzialdiagnostik und Verlaufskontrolle von Erkrankungen des Gehirns ist die Magnetresonanztomographie (MRT) eine wichtige Säule. Diese kann in Kombination mit moderner Computertechnik…

Photo

News • Neuer Forschungsbereich

„Systemmedizin“: Ein ganzheitlicher Blick auf komplexe Krankheitsprozesse

Das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE) erweitert seine Forschungsaktivitäten um den Bereich der „Systemmedizin“. Im Fokus steht das Beziehungsgeflecht der Mechanismen…

Verwandte Produkte

Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon · Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
AI-Rad Companion

Artificial Intelligence

Siemens Healthineers · AI-Rad Companion

Siemens Healthcare GmbH
Alphenix Biplane High Definition Detector

Bi-Plane

Canon · Alphenix Biplane High Definition Detector

Canon Medical Systems Europe B.V.
Aquilion Exceed LB

Oncology CT

Canon · Aquilion Exceed LB

Canon Medical Systems Europe B.V.
Aquilion Lightning

20 to 64 Slices

Canon · Aquilion Lightning

Canon Medical Systems Europe B.V.
Newsletter abonnieren