Zum ihrem Schutz ist die mRNA (blaue Schlangen) in einem Lipid-Nanopartikel verpackt. Mit Neutronen der Forschungs-Neutronenquelle untersuchte ein Forschungsteam verschiedene Formulierungen, um die Übergabe der mRNA an die Zelle zu optimieren.

Bildquelle: BioNTech / Reiner Müller

News • Wirkstoffe gegen Covid-19

Nano-Technik hilft bei der Entwicklung von mRNA-Medikamenten

Die Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München (TUM) spielt eine wichtige Rolle bei der Untersuchung von mRNA-Nanopartikeln, ähnlich zu denen, die im Covid-19-Impfstoff der Firmen BioNTech und Pfizer eingesetzt werden.

Mit Hilfe des in Garching verfügbaren hohen Neutronenflusses gelang es den Forschenden am Heinz Maier-Leibnitz Zentrum (MLZ), unterschiedliche Formulierungen für den mRNA-Impfstoff zu charakterisieren und damit Grundlagen für die Verbesserung von deren Wirksamkeit zu schaffen. 

Die Wissenschaftler stellen ihre Erkenntnisse in den Fachjournalen Cells, Biomaterials und Applied Nano Materials vor.

Messenger-RNA (mRNA, deutsch „Boten-RNA“) enthält den spezifischen Bauplan für Proteine, die dann von der Zelle synthetisiert werden. Damit kann grundsätzlich eine sehr große Bandbreite unterschiedlicher therapeutisch wirksamer Proteine bereitgestellt werden. Im Fall des Covid-19-Impfstoffs sind das die Proteine der charakteristischen Spikes auf der Oberfläche des Coronavirus, die für die Impfung eingesetzt werden. Diese werden auf der Oberfläche von Immunzellen präsentiert, woraufhin das Immunsystem des Menschen die Abwehr gegen diese körperfremden Eiweißstoffe und damit gegen die Coronaviren einleitet. Die mRNA selbst wird nach wenigen Stunden wieder vollständig abgebaut, was vorteilhaft für die Sicherheit dieser Impfstoffe ist.

Dr. Aurel Radulescu am Instrument KWS-2 des Jülich Centre for Neutron Science...
Dr. Aurel Radulescu am Instrument KWS-2 des Jülich Centre for Neutron Science (JCNS) in der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München

Bildquelle: Bernhard Ludewig / TUM / FRM II

Damit die mRNA nicht schon auf dem Weg zur Zelle von den allgegenwärtigen Enzymen des Körpers abgebaut wird, muss man sie entsprechend verpacken. Dies geschieht durch Nanopartikel, die aus einer Mischung aus Lipiden oder Polymeren bestehen können. Die Lipide sind Fettmoleküle, die den Molekülen der Zellhülle ähneln und dabei helfen, die mRNA ins Zellinnere abzugeben. Lipide und Biopolymere werden danach vom Körper wieder abgebaut oder ausgeschieden. 

In Zusammenarbeit mit der Gruppe von Prof. Peter Langguth, Abteilung Pharmazeutische Technologie am Institut für Pharmazeutische und Biomedizinische Wissenschaften der Johannes-Gutenberg Universität Mainz, entwickelte das von Dr. Heinrich Haas geleitete Formulierungsteam der Firma BioNTech zu diesem Zweck eine Reihe von Formulierungen, bei denen die Nanopartikel aus in der Pharmazie bereits bewährten Lipiden und Biopolymeren in unterschiedlichen Mischungen bestanden. 

Um die Eigenschaften verschieden zusammengesetzter Nanopartikel miteinander zu vergleichen, unterzogen die Forschenden sie unterschiedlichsten Untersuchungen. Neben Röntgen- und mikroskopischen Analysen zählte dazu auch die Bestrahlung mit Neutronen am Instrument KWS-2, das das Forschungszentrum Jülich am FRM II der TU München in Garching betreibt. Die Neutronen werden dabei im Inneren der Nanopartikel unter anderem an den Wasserstoffkernen gestreut und auf charakteristische Weise von ihrem Weg abgelenkt. Daraus lassen sich Rückschlüsse auf deren Verteilung ziehen. Tauscht man nun die Wasserstoffatome bestimmter Komponenten – zum Beispiel nur der Lipide – gegen schweren Wasserstoff aus, ändern sich zwar nicht die chemischen Eigenschaften oder die pharmazeutische Wirkung, jedoch die Streuung der Neutronen. „Mit dieser Methode lassen sich Teile einer komplexen Mehrkomponenten-Morphologie selektiv hervorheben, ohne die physikalische Chemie der Probe zu verändern“, sagt Dr. Aurel Radulescu vom Jülich Centre for Neutron Science (JCNS), der für das Instrument KWS-2 verantwortlich ist und die Auswertung der Messergebnisse leitete. „Auf diese Weise können Struktureigenschaften dargestellt werden, die mit anderen Methoden nicht, oder kaum, sichtbar zu machen sind.“

Solche Fragen der praktischen Herstellbarkeit stellen eine wichtige Voraussetzung für die Entwickelbarkeit pharmazeutischer Produkte dar

Peter Langguth

Bei diesen Analysen interessierten sich die Forschungsteams dafür, wie effizient die Übertragung der mRNA in die Zelle, die sogenannte Transfektion, bei den unterschiedlichen Formulierungen funktionierte. Auf diese Weise fanden die Forscherinnen und Forscher heraus, dass die höchste Transfektionsrate mit Nanopartikeln erhalten wurde, die sich durch eine bestimmte Art der inneren Ordnung auszeichnen. „Immer wenn sich geordnete und weniger geordnete Bereiche im Inneren der Nanopartikel in charakteristischer Weise abwechselten, wurde eine hohe biologische Aktivität festgestellt. Hierbei könnte es sich um ein allgemeingültiges Konzept der Struktur-Aktivitätsbeziehung handeln, das unabhänging von den hier untersuchten Sytemen anwendbar ist“, hebt Dr. Haas hevor. Eine ähnlich niedrige Ordnung wurde von den Forschungsteams zuvor auch schon mit Hilfe von Röntgenstrahlung in anderen Lipidnanopartikeln gefunden. 

Um die gewünschten Struktureigenschaften zu erhalten mussten Lipide und Biopolymere mit genau bestimmten Verfahren mit der mRNA zusammengebracht werden. Dabei konnten das Forschungsteam zeigen, dass sich die Nanopartikel zur Verpackung der mRNA in einem Schritt herstellen lassen, was im Vergleich zu einem ursprünglich ebenfalls erprobten Zwei-Schritt-Verfahren eine erhebliche Vereinfachung bedeutet. So konnte am Ende eine vereinfachte Methode zur Herstellung von mRNA Nanopartikeln mit verbesserter Aktivität gefunden werden. „Solche Fragen der praktischen Herstellbarkeit stellen eine wichtige Voraussetzung für die Entwickelbarkeit pharmazeutischer Produkte dar“, stellt Prof. Langguth klar. In der Zukunft können solche Konzepte in der Entwicklung neuer mRNA basierter Therapeutika mit berücksichtigt werden. 


Quelle: Technische Universität München

29.12.2021

Verwandte Artikel

Photo

News • Vielversprechende Nanostrukturen

Blüten-Partikel bringen Medikamente ans Ziel

Mit Mini-Blüten gegen Krebs: Forscher haben Mikropartikel aus hauchdünnen Blättern entwickelt, die Medikamente über die Blutbahn punktgenau zu einem Tumor oder einem Blutgerinnsel transportieren.

Photo

News • Lösung mit Goldnanodrähten

Nanobiosensor für Corona-Nachweis entwickelt

Wissenschaftler am HZDR haben einen Nanobiosensor entwickelt, der Covid-19-assoziierte Antigene und Antikörper, aber auch andere Biomarker aufspüren soll.

Photo

News • Antidepressivum gegen SARS-Cov-2

Forscher finden neue Zielstruktur gegen Corona

Das Antidepressivum Fluoxetin hemmt SARS-CoV-2 in Zellkulturen und in Präparaten aus menschlichem Lungengewebe. Nach aufwändigen vergleichenden Studien steht nun fest, wie das passiert.

Verwandte Produkte

Newsletter abonnieren