Automatisierte Mikroskopie dokumentiert die Veränderungen der Zellen nach...
Automatisierte Mikroskopie dokumentiert die Veränderungen der Zellen nach Behandlung mit einer Testsubstanz.

Quelle: M. Boutros/Deutsches Krebsforschungszentrum

Künstliche Intelligenz

Maschinelles Lernen für die Wirkstoff-Forschung

Neue Medikamente kostengünstiger und schneller entwickeln mit Hilfe von bildbasierten Analysen – dafür vergibt der Europäische Forschungsrat ERC erstmals einen „Proof-of-Concept-Grant" an Wissenschaftler vom Deutschen Krebsforschungszentrum und der Universität Heidelber

Die Entwicklung neuer Medikamente ist ein langwieriger, teurer Prozess. Oft stellt sich erst nach langer Entwicklungszeit heraus, dass ein potentieller neuer Wirkstoff unerwünschte Nebenwirkungen verursacht und damit aufgegeben werden muss. Das treibt die Kosten zusätzlich in die Höhe. Bei der Suche nach neuen Wirkstoffen werden meist tausende von Substanzen parallel getestet, dabei wird jedoch nur ein sehr kleiner Ausschnitt ihrer biologischen Aktivität erfasst. Diese enge Charakterisierung neuer Wirkstoffe kann dazu führen, dass unerkannte Wirkmechanismen übersehen werden, die bei der Behandlung anderer Krankheiten helfen könnten.

„Es wäre wünschenswert und vor allem ökonomisch sinnvoll, neue Wirkstoffkandidaten gleich während der frühen präklinischen Entwicklung umfassend zu charakterisieren", sagt Michael Boutros vom Deutschen Krebsforschungszentrum (DKFZ) und von der Medizinischen Fakultät Mannheim der Universität Heidelberg. Sein Projekt „REMATCH - Image-based Analysis for Drug Discovery and Repurposing", das vom Europäischen Forschungsrat (ERC) als „Proof of Concept" finanziell gefördert wird, setzt genau hier an. Mit diesem Förderinstrument unterstützt der Forschungsrat Wissenschaftler dabei, das wirtschaftliche Potenzial ihrer in einem laufenden ERC-Förderprojekt entwickelten Ergebnisse oder Technologien weiterzuentwickeln, um sie zum Beispiel in Ausgründungen umzusetzen.

Die Idee zu REMATCH ging aus Boutros' ERC-Projekt „SYNGENE" hervor. Es basiert auf einer in seiner Abteilung entwickelten Software für bildbasierte Screenings, die es erlaubt, eine Vielzahl an Reaktionen von Zellen auf Wirkstoffe sehr breit und kostengünstig zu erfassen und mit Verfahren des maschinellen Lernens zu analysieren.

Dafür reicht es aus, die Veränderungen von nur einer Handvoll zellulärer Strukturen zu beobachten. „Jede Testsubstanz bewirkt subtile Veränderungen in der Struktur und Verteilung dieser Biomoleküle, die mit Fluoreszenzfärbungen sichtbar gemacht und durch automatisierte Mikroskopie dokumentiert werden. Zusammengenommen ergibt sich so ein umfassendes Bild vom Zustand der Zelle", erklärt Boutros das Prinzip.

Um jedoch die biologische Aussage eines solchen Bildes interpretieren zu können, muss den Anwendern der Methode eine Referenz zur Verfügung stehen. Mit REMATCH wollen die Forscher um Boutros nun eine Referenzdatenbank für solche Wirkstoff-Muster erstellen. Dabei verwenden sie neue Ansätze der künstlichen Intelligenz und des maschinellen Lernens.

Die sehr großen Datensätze der Referenzdatenbank dienen dazu, den Effekt einer Testsubstanz mit dem von bereits zugelassenen oder gescheiterten Wirkstoffen (so genannten „fallen angels") abzugleichen, um Nebenwirkungen frühzeitig auszuschließen und neue Wirkungsfelder zu erkunden. Die ERC-Förderung ermöglicht es Boutros nun, das wirtschaftliche Potential der von seiner Abteilung neu entwickelten analytischen Ansätze und Software-Lösungen sowie die Möglichkeit einer Ausgründung des Projekts zu prüfen und anzustoßen.

Quelle: Deutsches Krebsforschungszentrum

23.10.2018

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Wirkstoffe gegen Hirnerkrankungen

Smarte Biomarker sollen neue Medikamente gegen Alzheimer & Co. finden

Mit der Technologieplattform "i3D-Markers" wollen Dr. Hayder Amin und Dr. Caghan Kizil vom DZNE-Standort Dresden die Entwicklung von Medikamenten gegen Hirnerkrankungen beschleunigen.…

Photo

Datenverarbeitung und KI

Hochleistungs-Rechner für die Covid-Forschung

Die Erforschung von Covid-19 ist mit der Analyse und Verarbeitung enormer Datenmengen verbunden, etwa bei der Genom-Sequenzierung zur Identifizierung von Hochrisikopatienten und Entwicklung gezielter…

Photo

Autonome Gehhilfe

Hightech-Rollator findet seinen Weg von selbst

Forscher der Hokkaido University haben einen autonomen Hightech-Rollator für Behinderte in Krankenhäusern oder Pflegeeinrichtungen entwickelt, der sich dank eines speziellen Senders anfordern…

Verwandte Produkte

Agfa - Smart XR

Accessories/ Complementary Systems

Agfa - Smart XR

Agfa HealthCare
Canon - Advanced Intelligent Clear-IQ Engine for CT

Artificial Intelligence

Canon - Advanced Intelligent Clear-IQ Engine for CT

Canon Medical Systems Europe B.V.
Canon – Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon – Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Canon - Aquilion Exceed LB

Oncology CT

Canon - Aquilion Exceed LB

Canon Medical Systems Europe B.V.
Canon - HIT Automation Platform

Artificial Intelligence

Canon - HIT Automation Platform

Canon Medical Systems Europe B.V.
Canon Medical - CT Scan Unit

Mobile CT Solutions

Canon Medical - CT Scan Unit

Canon Medical Systems Europe B.V.
Newsletter abonnieren