Das Team um Prof. Dr. Ulrich Hofmann (Mitte) bei der Übernahme des ersten präklinischen Magnetic Particle Imaging-Systems in einer süddeutschen Klinik

© Universitätsklinikum Freiburg

News • Magnetic Particle Imaging

Magnete bringen Farbe in die Bildgebung

Ein neuartiges bildgebendes Messgerät wurde in der Klinik für Neurochirurgie des Universitätsklinikums Freiburg Anfang August in Betrieb genommen. Das sogenannte Magnetic Particle Imaging-System (MPI) macht sich die magnetischen Eigenschaften winziger, nur wenige Nanometer großer Eisenoxidpartikel zunutze.

Diese Nanopartikel nehmen an Blutfluss und Stoffwechsel teil, ohne die Körperfunktionen zu stören. Die Besonderheit des MPIs: Es kann gleichzeitig verschieden Typen von Nanopartikeln messen. Zudem kann mithilfe eigener Kalibrier-Kurven unterschieden werden, ob und wo ein und dieselbe Substanz in gebundener oder freier Form vorliegt. So wird eine „vielfarbige“ Darstellung verschiedener nano-gebundener Wirkstoffe oder nano-markierter Zellen möglich. In Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Forschungskonsortiums „Funktionelle Magnetotherapie“ soll die Technik nun im Tiermodell für die gezielte Bekämpfung von Hirntumoren weiterentwickelt werden.

Photo
Simuliertes Blutgefäß (grau) und Fremdkörper (orange): Ein spiralig gewundener Kunststoff-Schlauch (ø 1mm) wurde mit Nanopartikeln einer Größe befüllt und zusammen mit einem Testkörper aus anderen Nanopartikeln vermessen. Die farbige Darstellung ergibt sich aus den unterschiedlichen Kalibrier-Kurven beider Substanzen.

© Universitätsklinikum Freiburg

Die Forschungsgruppe um Prof. Dr. Ulrich Hofmann in der Sektion für Neuroelektronische Systeme der Klinik für Neurochirurgie am Universitätsklinikum Freiburg nutzt für die Bildgebung per MPI-System das Konzept des sogenannten Feldfreien Punkts. Dazu formen sie mithilfe einer komplexen Anordnung starker Elektromagneten im Inneren des MPI-Geräts einen etwa einen Millimeter kleinen, ellipsenförmigen Bereich ohne Magnetfeld. Denn während die Nanopartikel in starken Magnetfeldern vollständig magnetisiert vorliegen, liefern sie in schwachen Magnetfeldern messbare elektrische Signale. Wird der Feldfreie Punkt durch den Messbereich bewegt, lässt sich aus diesen Signalen die räumliche Verteilung der Nanopartikel als dreidimensionales Bild rekonstruieren. Ein hühnereigroßes Messvolumen wird dabei in etwa 1/50 Sekunde elektronisch abgetastet.

Unser Ziel ist es, mithilfe von MPI chemotherapeutische Wirkstoffe gegen Hirntumore im Blut bis zu ihrem Zielort im Gehirn zu verfolgen

Ulrich Hofmann

„Die Magnetpartikelbildgebung eignet sich hervorragend zur Messung von dynamischen Prozessen wie dem schnellen Blutfluss in Herz oder Gehirn, da die Magnetfelder den Körper quasi ungehindert durchdringen“, sagt Hofmann. Zudem kommt die Methode ohne schädliche Strahlung aus; die erzeugten Magnetfelder sind für lebende Organismen unbedenklich. „Unser Ziel ist es, mithilfe von MPI chemotherapeutische Wirkstoffe gegen Hirntumore im Blut bis zu ihrem Zielort im Gehirn zu verfolgen. Dort ließe sich die Blut-Hirn-Schranke idealerweise durch eine gezielte magnetische Erwärmung der Nanopartikel abschwächen, so dass die Medikamente ihre Wirkung direkt im Tumor entfalten und das umliegende gesunde Hirngewebe schonen.“

Ein weiteres Einsatzgebiet könnte die Kartierung bestimmter Rezeptoren sein, an denen beispielsweise das Coronavirus SARS-CoV-2 andockt: „Beim Einsatz geeigneter Nanopartikel ließe sich mithilfe der Magnetpartikelbildgebung genau nachverfolgen, welche Organe das Virus befällt“, erläutert Hofmann. 


Quelle: Universitätsklinikum Freiburg

12.08.2020

Verwandte Artikel

Photo

News • Von Farbklecksen zu Feinheiten

Helfer für die Hirnforschung: Neuer 7T-MRT angeschafft

Mit einem 7-Tesla-MRT lassen sich feinste Strukturen und molekulare Vorgänge im Gehirn darstellen – beste Voraussetzungen für die Hirnforschung. Jetzt konnte eines der Geräte angeschafft werden.

Photo

News • Myelin in der Bildgebung

Neues MRT-Verfahren macht Multiple Sklerose sichtbar

Der Verlust der Myelinscheiden im Gehirn ist ein wichtiges Merkmal der MS. ​Forscher haben nun ein MRT-​Verfahren entwickelt, das den Zustand dieser Isolationsschicht genauer als bisher abbildet.

Photo

News • Chemo-"Shuttle" durch die Blut-Hirn-Schranke

Mit Nanoteilchen effektiv gegen Hirntumoren vorgehen

Mit einem hochporösen Nanoteilchen, das ein Chemotherapeutikum aufsaugen kann, wollen Forscher der University of Queensland die Therapie von Glioblastomen verbessern.

Verwandte Produkte

Newsletter abonnieren