News • Neuronale Netze vs. Kabuki & Co.

KI "PEDIA" spürt seltene Krankheiten auf – mit Portraitfotos

Forscher der Uni Bonn zeigen, dass Porträtfotos mit Erbgut- und Patientendaten Diagnosen verbessern

Weltweit werden rund eine halbe Million Kinder Jahr für Jahr mit einer seltenen Erbkrankheit geboren. Eine sichere Diagnose ist schwierig und langwierig. Wissenschaftler der Universität Bonn und der Charité – Universitätsmedizin Berlin zeigen in einer Studie an 679 Patienten mit 105 verschiedenen seltenen Krankheiten, dass mit Hilfe Künstlicher Intelligenz (KI) die Diagnose effizienter und sicherer erfolgen kann. Ein neuronales Netzwerk kombiniert automatisch Porträtfotos mit Gen- und Patientendaten. Die Ergebnisse werden nun im Journal „Genetics in Medicine” vorgestellt.

Das neuronale Netzwerk kombiniert die Daten von Porträtbildern mit Gen- und...
Das neuronale Netzwerk kombiniert die Daten von Porträtbildern mit Gen- und Patientendaten.

© Foto: Tori Pantel

Viele Patienten mit seltenen Erkrankungen durchlaufen eine lange Odyssee, bis bei ihnen die richtige Diagnose gestellt wird. „Dadurch geht wertvolle Zeit verloren, die eigentlich für eine frühzeitige Therapie gebraucht wird, um unter anderem fortschreitende Schädigungen abzuwenden“, sagt Prof. Dr. med. Dipl. Phys. Peter Krawitz vom Institut für Genomische Statistik und Bioinformatik des Universitätsklinikums Bonn (UKB). Zusammen mit einem internationalen Forscherteam zeigt er, wie sich mit Künstlicher Intelligenz bei der Gesichtserkennung vergleichsweise rasche und sichere Diagnosen erstellen lassen.

PEDIA ist ein einzigartiges Beispiel für die Technologien der nächsten Generation der Phänotypisierung

Dekel Gelbman

Die Forscher nutzten die Daten von 679 Patienten mit 105 verschiedenen Erkrankungen, die durch die Veränderung an einem einzigen Gen ausgelöst werden. Dazu zählt etwa die Mukopolysaccharidose (MPS), bei der es unter anderem zu Knochenverformungen, zur Minderung der geistigen Fähigkeiten und Kleinwuchs kommt. Das Mabry-Syndrom führt ebenfalls zu einer mentalen Entwicklungsverzögerung. All diesen Erkrankungen ist gemeinsam, dass die Gesichtszüge der Betroffenen Auffälligkeiten aufzeigen. Besonders charakteristisch ist dies beispielsweise beim Kabuki-Syndrom, das an die Schminke einer traditionellen japanischen Form des Theaters erinnert. Die Augenbrauen setzen hoch an, der Augenabstand ist weit und die Lidspalten sind lang.

Diese Besonderheiten im Erscheinungsbild kann die eingesetzte Software automatisch aus einem Foto herauslesen. Zusammen mit den klinischen Symptomen der Patienten und Erbgutdaten lässt sich mit hoher Treffsicherheit berechnen, um welche Erkrankung es sich handelt. Das digitale Gesundheits-Unternehmen FDNA hat das neuronale Netzwerk DeepGestalt entwickelt, das die Forscher als Werkzeug der Künstlichen Intelligenz für ihre Studie nutzen. „PEDIA ist ein einzigartiges Beispiel für die Technologien der nächsten Generation der Phänotypisierung“, sagte Dekel Gelbman, CEO der FDNA. „Die Integration eines fortschrittlichen KI- und Gesichtsanalyse-Frameworks wie DeepGestalt in den Workflow der Variantenanalyse wird zu einem neuen Paradigma für überlegene Gentests führen.“

Dieser Artikel könnte Sie auch interessieren

Photo

Artikel • Radiologie + Daten + KI = ?

Radiomics – wie geht das eigentlich?

Eines der spannendsten Themen, das derzeit bei interessierten Radiologen die Runde macht, ist Radiomics. Es geht dabei irgendwie um Daten und Künstliche Intelligenz (KI), soweit sind sich die meisten einig – die Details durchschauen allerdings nur Wenige. Prof. Ulrike Attenberger will mit ihrem Vortrag auf dem Deutschen Röntgenkongress in Leipzig Abhilfe schaffen.

30.000 Bilder als Trainingsdaten

Die Wissenschaftler trainierten dieses Computer-Programm mit rund 30.000 Porträtbildern von Menschen, die von seltenen syndromalen Erkankungen betroffen sind. „In Kombination mit der Gesichtsanalyse lassen sich die entscheidenden genetischen Faktoren herausfiltern und Gene priorisieren“, sagt Krawitz. „Die Zusammenführung der Daten im neuronalen Netzwerk reduziert die Zeit der Datenanalyse und führt zu einer höheren Diagnosequote.“ Der Leiter des Instituts für Genomische Statistik und Bioinformatik am UKB arbeitet schon seit Längerem mit FDNA zusammen. „Das ist für uns wissenschaftlich hoch interessant, und wir können auch bei so manchem noch ungelösten Fall helfen, eine Ursache zu finden“, sagt Krawitz. Derzeit sind noch immer viele Patienten auf der Suche nach einer Erklärung für ihre Symptome.

Die Studie ist eine Teamleistung zwischen Computerwissenschaften und Medizin. Dies zeigt sich auch an der geteilten Erstautorenschaft des Informatikers Tzung-Chien Hsieh, Doktorand am Institut von Professor Krawitz, und Dr. Martin Atta Mensah, Arzt am Institut für Medizinische Genetik und Humangenetik der Charité sowie Fellow des Clinician Scientist Program von Charité und Berlin Institute of Health (BIH). Prof. Dr. Stefan Mundlos, Direktor des Instituts für Medizinische Genetik und Humangenetik der Charité, hat ebenfalls an der Studie mitgewirkt wie auch über 90 weitere Wissenschaftler. „Die Patienten wünschen sich eine zeitnahe und korrekte Diagnosestellung. Künstliche Intelligenz unterstützt Ärzte und Wissenschaftler darin, den Weg zu verkürzen“, sagt Dr. Christine Mundlos, stellvertretende Geschäftsführerin der Allianz Chronischer Seltener Erkrankungen (ACHSE) e.V. „Damit wird auch ein stückweit die Lebensqualität der Betroffenen verbessert.“

Quelle: Universitätsklinikum Bonn

07.06.2019

Verwandte Artikel

Photo

News • Erkennung therapie-relevanter Genetik

Leukämie: KI hilft bei der Diagnostik

Bestimmte genetische Merkmale sind für die Diagnostik der AML-Leukämie entscheidend. Ein neues KI-basiertes Verfahren kann diese Merkmale aus Aufnahmen von Knochenmarkausstrichen vorhersagen.

Photo

News • GestaltMatcher

Seltene Erkrankungen: Gesichtsanalyse verbessert die Diagnose

Wissenschaftler haben eine Software trainiert, mit der sich anhand von Porträtfotos seltene genetische Erkrankungen besser diagnostizieren lassen.

Photo

News • Prostatakrebs-Analyse

Mit KI und Multiomics gegen unnötige Entfernung der Prostata

Bei manchen Patienten mit Prostatakrebs muss die Prostata entfernt werden – aber nicht bei allen. Ein neues Verfahren nutzt KI und Multiomics, um die invasive Biopsie zur Abklärung zu vermeiden.

Verwandte Produkte

Newsletter abonnieren