Haemorasis bei der Arbeit: Ein Deep-Learning-System exkludiert alle Aufnahmen,...
Haemorasis bei der Arbeit: Ein Deep-Learning-System exkludiert alle Aufnahmen, deren Qualität nicht ausreicht (dunkle Kästen). Aus falsch zugeordneten Bildern (mit rotem X markiert) lernt der Algorithmus dazu.

Bildquelle: De Almeida et al., Nature Communications 2023 (CC BY 4.0)

News • Algorithmus "Haemorasis"

KI-gestützte Zellanalyse für schnellere Diagnose von Blutkrankheiten

Wissenschaftler vom Deutschen Krebsforschungszentrum (DKFZ) und vom Cambridge Stem Cell Institute haben ein KI-System entwickelt, das weiße und rote Blutzellen in mikroskopischen Aufnahmen von Blutproben erkennt und charakterisiert.

Der Algorithmus kann Mediziner bei der Diagnose von Bluterkrankungen unterstützen und steht als Open-Source-Methode für Forschungszwecke zur Verfügung. Die Forscher stellen das System in einer Publikation in Nature Communications im Detail vor

Bluterkrankungen sind häufig durch eine veränderte Anzahl und abweichende Form von roten und weißen Blutzellen gekennzeichnet. Um die Erkrankungen zu diagnostizieren, untersuchen Ärzte klassischerweise auf einem Objektträger ausgestrichenes Blut unter dem Mikroskop. Diese Art der Diagnostik ist unkompliziert, die Bewertung durch erfahrene Experten allerdings schwierig, da die Veränderungen teilweise sehr unscheinbar sind und nur wenige der zehntausenden sichtbaren Zellen betreffen. 

Der Algorithmus [...] ergänzt die menschlichen Fähigkeiten, die typischerweise eher auf Detailgenauigkeit ausgelegt sind

Moritz Gerstung

Aufgrund dieser Schwierigkeiten ist die Abgrenzung von Erkrankungen nicht immer einfach. So ähneln die sichtbaren Veränderungen im Blut von Patienten mit Myelodysplastischem Syndrom (MDS), eine Frühform der Leukämie, beispielsweise oftmals denen von wesentlich harmloseren Formen der Blutarmut (Anämie). Die endgültige Diagnose von MDS erfordert daher zusätzlich invasivere Verfahren, etwa die Analyse von Knochenmarksbiopsien sowie molekulargenetische Tests. 

„Um die Fachärzte bei diesen schwierigen Diagnosen zu unterstützen, haben wir ein computergestütztes System entwickelt, das weiße und rote Blutzellen aus dem peripheren Blut automatisch erkennt und charakterisiert“, erklärt Moritz Gerstung vom DKFZ. Gerstung und Kollegen trainierten den Haemorasis genannten Algorithmus zunächst, die Zellmorphologie von über einer halben Million weißer Blutzellen sowie vielen Millionen von roten Blutzellen von über 300 Personen mit unterschiedlichen Bluterkrankungen (verschiedene Anämien und Formen von MDS) zu erkennen. „Der Algorithmus ist in der Lage, Form und Anzahl von zehntausenden Blutzellen in einer mikroskopischen Aufnahme des Bluts zu erfassen. Das ergänzt die menschlichen Fähigkeiten, die typischerweise eher auf Detailgenauigkeit ausgelegt sind“, sagt Gerstung. Mithilfe des antrainierten Wissens kann Haemorasis nun Diagnosen von Bluterkrankungen vorschlagen und sogar genetische Subtypen der Krankheiten unterscheiden. Darüber hinaus zeigt der Algorithmus auch konkrete Zusammenhänge zwischen bestimmten Zellmorphologien und Erkrankungen auf, die wegen der Vielzahl von Zellen oft nur schwer zu finden sind. 

Haemorasis wurde bereits an drei unabhängigen Gruppen von Patienten getestet, um zu demonstrieren, dass das System auch in anderen Untersuchungszentren und Blutbildscannern funktioniert „Wir haben jetzt erstmals den Nachweis erbracht, dass eine computerunterstützte Analyse von Blutaufnahmen möglich ist und einen Beitrag zur Erstdiagnostik leisten kann“, erklärt Gerstung. Haemorasis ist als Arbeitserleichterung für die Hämatologie konzipiert und kann helfen, eine genauere Erstdiagnose von Blutkrankheiten zu stellen. Diese ist wichtig, um solche Patienten zu identifizieren, die invasivere Untersuchungen, wie Knochenmarkpunktionen oder genetische Analysen benötigen. 

„Die automatisierte Zellanalyse mit Haemorasis könnte in Zukunft die Routinediagnose von Bluterkrankungen ergänzen. Bis jetzt ist der Algorithmus erst auf bestimmte Erkrankungen trainiert – wir sehen jedoch noch großes Potential in diesem Ansatz“, so Gerstung. Er betont, dass weitere Studien erforderlich sind, unter anderem um mögliche Einschränkungen der Methode zu identifizieren. 


Quelle: Deutsches Krebsforschungszentrum

11.08.2023

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Erkennung therapie-relevanter Genetik

Leukämie: KI hilft bei der Diagnostik

Bestimmte genetische Merkmale sind für die Diagnostik der AML-Leukämie entscheidend. Ein neues KI-basiertes Verfahren kann diese Merkmale aus Aufnahmen von Knochenmarkausstrichen vorhersagen.

Photo

News • Leukämiediagnostik

KI-gesteuerte Klassifizierung einzelner Blutzellen

Erstmals zeigen Forschende des Helmholtz Zentrums München und des Klinikums der Ludwig-Maximilians-Universität München (LMU), dass Deep-Learning-Algorithmen bei der Klassifizierung von Blutproben…

Photo

News • Urin-Screening + Machine Learning

Harnwegsinfekte: Schnellere Diagnose per KI

Fraunhofer Austria und das Institut AULSS2 Marca Trevigiana in Treviso entwickelten eine auf Künstlicher Intelligenz beruhende Methode zur Diagnose von Harnwegsinfekten, die Labors entlasten soll.

Verwandte Produkte

Newsletter abonnieren