Bildquelle: Dietz et al., JCI Insight 2021 (CC BY 4.0)

News • KI-verstärkte Bildgebung

Ganzkörper-MRT erkennt Diabetes

Mit einer Ganzkörper-Kernspinaufnahme (MRT) lässt sich Typ-2-Diabetes diagnostizieren. Das zeigt eine aktuelle Studie von Forschenden des Deutschen Zentrums für Diabetesforschung, des Instituts für Diabetesforschung und Metabolische Erkrankungen des Helmholtz Zentrums München an der Universität Tübingen, des Max- Planck-Instituts für Intelligente Systeme und der Universitätsklinik Tübingen.

Sie nutzten Deep-Learning-Methoden und Daten von mehr als 2000 MRTs, um Patienten mit (Prä-)Diabetes identifizieren zu können. Die Ergebnisse wurden jetzt im Fachjournal JCI Insight veröffentlicht.

Photo
Gradientenkarten für Diabetes, die für 50 zufällig ausgewählte Personen mit Prädiabetes berechnet wurden. Die Körperscans sowie die Gradientenkarten wurden entlang der koronalen Projektion gemittelt, um zweidimensionale Darstellungen zu erzeugen.

Bildquelle: Dietz et al., JCI Insight 2021 (CC BY 4.0)

Übergewicht und viel Körperfett erhöhen das Risiko eines Diabetes. Doch nicht jeder übergewichtige Mensch erkrankt auch daran. Entscheidend ist, wo das Fett im Körper gespeichert wird. Lagert sich Fett unter der Haut an, ist es harmloser als Fett in tieferen Bereichen des Bauches (das sogenannte viszerale Fett). Wie das Fett im Körper verteilt ist, lässt sich mit Ganzkörper-Kernspintomographie gut darstellen. „Wir haben nun untersucht, ob man Typ-2-Diabetes auch anhand bestimmter Muster der Körperfettverteilung im MRT diagnostizieren könnte“, erläutert Letzt-Autor Prof. Robert Wagner den Ansatz der Forschenden.

Um solche Muster zu erkennen, nutzten die Forschende künstliche Intelligenz (KI). Sie trainierten Deep-Learning-Netzwerke (Maschinelles Lernen) mit Ganzkörper-MRT-Aufnahmen von 2.000 Menschen, die sich auch einem Screening mit oralem Glukosetoleranz-Test (abgekürzt oGTT) unterzogen hatten. Mit dem oGTT, auch Zuckerbelastungstest genannt, lassen sich ein gestörter Glukosestoffwechsel nachweisen und ein Diabetes diagnostizieren. So lernte die KI, Diabetes zu detektieren. „Eine Analyse der Modellergebnisse ergab, dass eine Fettansammlung im unteren Abdomen bei der Diabetesdetektion eine entscheidende Rolle spielt“, berichtet Wagner. Weitere zusätzliche Analysen zeigten zudem, dass auch ein Teil der Menschen mit einer Vorstufe des Diabetes (Prädiabetes) sowie Menschen mit einem Diabetes-Subtyp, der zu Nierenerkrankungen führen kann, über MRT-Aufnahmen identifiziert werden können.

Die Forschenden arbeiten nun daran, die biologische Steuerung der Körperfettverteilung zu entschlüsseln. Ein Ziel ist es, durch neue Methoden wie dem Einsatz von KI die Ursachen des Diabetes zu identifizieren, um bessere Vorsorge- und Therapiemöglichkeiten zu finden.


Quelle: Deutsches Zentrum für Diabetesforschung

13.10.2021

Verwandte Artikel

Photo

News • Nicht-invasive Risikobewertung

Prostatakrebs: KI soll unnötige Biopsien vermeiden

Durch die Kombination von Risikomarkern, systematischer Befundung von MRT-Aufnahmen und KI kann das Risiko für Prostatakrebs präziser als bisher vorhergesagt werden, wie eine neue Studie zeigt.

Photo

News • Bildrekonstruktion mit Deep Learning

Neue MRT-Technik erkennt Schlaganfall in kürzester Zeit

Deep Learning-KI soll dabei helfen, MRT-Aufnahmen schneller zu rekonstruieren und die Bildqualität erhöhen. Das hilft bei der Erkennung akuter ischämischer Schlaganfälle.

Photo

News • Deep Learning und Hirnscans

Frühchen-MRT mit KI optimieren

Ein Team aus Innsbruck hat eine KI entwickelt, die erstmals 3D-Bilddaten von Gehirnuntersuchungen bei Frühgeborenen automatisiert analysieren kann. Nun gilt es, sie weiter zu trainieren.

Verwandte Produkte

Newsletter abonnieren