Polymer-basiertes künstliches neuronales Netz: Das stark nichtlineare...
Polymer-basiertes künstliches neuronales Netz: Das stark nichtlineare Verhalten dieser Netze ermöglicht ihren Einsatz im Reservoir-Computing

© TU Dresden

Früherkennung und Behandlung von Krankheiten

Forscher entwickeln implantierbares KI-System

Künstliche Intelligenz (KI) wird die Medizin und das Gesundheitswesen reformieren: Diagnostische Patientendaten, z.B. von EKG, EEG oder Röntgenaufnahmen, können in Zukunft mit Hilfe von maschinellem Lernen analysiert werden, sodass Krankheiten anhand von subtilen Veränderungen schon sehr frühzeitig erkannt werden können.

Allerdings ist die Implementierung von KI innerhalb des menschlichen Körpers eine große technische Herausforderung. Wissenschaftlern der Professur für Optoelektronik an der TU Dresden ist es nun erstmals gelungen, eine bio-kompatible implantierbare KI-Plattform  zu entwickeln, die gesunde und krankhafte Muster in biologischen Signalen wie z.B. Herzschlägen in Echtzeit klassifiziert und so auch ohne ärztliche Überwachung krankhafte Veränderungen erkennt. Die Forschungsergebnisse wurden jetzt in der Fachzeitschrift „Science Advances“ veröffentlicht.

Mit diesem Ansatz wird es möglich, in Zukunft weitere intelligente Systeme zu entwickeln, die helfen können, Menschenleben zu retten

Matteo Cucchi

In dieser Arbeit zeigt das Forscher-Team um Prof. Karl Leo, Dr. Hans Kleemann und Matteo Cucchi einen Ansatz für die Echtzeit-Klassifikation von gesunden und krankhaften Biosignalen basierend auf einem biokompatiblen KI-Chip. Dafür verwendeten sie polymer-basierte Faser-Netzwerke, die dem menschlichen Gehirn strukturell ähneln und das neuromorphe KI-Prinzip des Reservoir-Computings ermöglichen. Die zufällige Anordnung der Polymer-Fasern bildet ein sogenannten „Recurrent Network“, welches ihm erlaubt, Daten analog dem menschlichen Gehirn zu verarbeiten. Die Nichtlinearität dieser Netzwerke ermöglicht vor allem die Verstärkung bereits kleinster Signaländerungen, die – z.B. im Falle des Herzschlages – oft nur schwer von Ärzten bewertet werden können. Durch die nichtlinearen Transformation mit Hilfe des Polymer-Netzwerkes ist dies jedoch problemlos möglich.

In Versuchen konnte die KI gesunde Herzschläge von drei häufig auftretenden Rhythmusstörungen mit einer Genauigkeit von 88% unterscheiden. Dabei verbrauchte das Polymer-Netzwerk weniger Energie als ein Herzschrittmacher. Die Nutzungsmöglichkeiten für implantierbare KI-Systemen sind vielfältig: So könnten damit z.B. Herzrhythmusstörungen oder Komplikationen nach Operationen überwacht und via Smartphone an Ärzte und Patienten gemeldet und schnelle medizinische Hilfe ermöglicht werden. „Die Vision, moderne Elektronik mit der Biologie zu kombinieren, ist in den letzten Jahren durch die Entwicklung sogenannter organischer Mischleiter ein großer Stück vorangekommen“, erklärt Matteo Cucchi, Doktorand und Erstautor der Veröffentlichung. „Bisher waren die Erfolge jedoch auf einfache elektronische Komponenten wie einzelne Synapsen oder Sensoren beschränkt. Das Lösen komplexer Aufgaben war bisher nicht möglich. In unserer Arbeit haben wir nun einen entscheidenden Schritt zur Verwirklichung dieser Vision getan. Durch die Nutzung von Prinzipien des neuromorphen Rechnens, wie z.B. das hier genutzte Reservoir-Computing, ist es uns gelungen, komplexe Klassifizierungsaufgaben in Echtzeit und potenziell auch innerhalb des menschlichen Körpers zu lösen. Mit diesem Ansatz wird es möglich, in Zukunft weitere intelligente Systeme zu entwickeln, die helfen können, Menschenleben zu retten.“


Quelle: TU Dresden

20.08.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Telemedizin

KI und 5G sollen Versorgung bei schwerer Herzschwäche verbessern

Patienten mit chronischer Herzinsuffizienz benötigen im Verlauf der Erkrankung häufig eine dauerhafte Therapieoption. Diese kann beispielsweise durch ein permanentes Herzunterstützungssystem…

Photo

Bronchialkarzinom-Frühzeichen

KI erkennt Lungenkrebs bis zu einem Jahr früher

Ein auf Künstlicher Intelligenz (KI) basierendes Programm erkennt Anzeichen von Lungenkrebs auf CT-Scans ein Jahr früher als üblich, wie eine Studie des National Institute for Research in Digital…

Photo

Künstliche Intelligenz für Hörgeräte

Cochlea-Implantate & Co.: Besser hören mit KI

In lauter Umgebung ist es mit einem Hörgerät oder Hörimplantat schwer, ein Gegenüber zu verstehen, weil derzeitige Audioprozessoren noch Schwierigkeiten haben, sich präzise genug auf bestimmte…

Verwandte Produkte

Agfa - Smart XR

Accessories/ Complementary Systems

Agfa - Smart XR

Agfa HealthCare
Canon - Advanced Intelligent Clear-IQ Engine for CT

Artificial Intelligence

Canon - Advanced Intelligent Clear-IQ Engine for CT

Canon Medical Systems Europe B.V.
Canon – Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon – Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Canon - Aquilion Exceed LB

Oncology CT

Canon - Aquilion Exceed LB

Canon Medical Systems Europe B.V.
Canon - HIT Automation Platform

Artificial Intelligence

Canon - HIT Automation Platform

Canon Medical Systems Europe B.V.
Canon Medical - CT Scan Unit

Mobile CT Solutions

Canon Medical - CT Scan Unit

Canon Medical Systems Europe B.V.
Newsletter abonnieren