KI-annotiertes Bild mit markiertem Tumor, Tumorkern und Ödemen
KI-annotiertes Bild mit markiertem Tumor, Tumorkern und Ödemen

Bildquelle: Monash University

News • Algorithmen unter sich

Bildgebung: KI fragt andere KI nach "Zweitmeinung"

Forscher der Monash University haben ein neues KI-Modell für die medizinische Bildgebung entwickelt, das den Prozess der Einholung einer zweiten Meinung effektiv nachahmen kann.

Wie die Forscher zum Hintergrund der jetzt in der Fachzeitschrift Nature Machine Intelligence veröffentlichten Forschungsarbeit berichten, zielt ihr Ansatz auf die begrenzte Verfügbarkeit medizinischer Bilder mit menschlichen Kommentaren oder Beschriftungen (Labels). Um dieser zu begegnen, entwickelten sie einen alternativen Lernansatz für nicht gekennzeichnete Daten. Hiervon versprechen sich die Wissenschaftler aus den Fakultäten für Ingenieurwesen und Informatik der Monash University einen Fortschritt für den Bereich der medizinischen Bildanalyse, von dem Radiologen und andere Gesundheitsexperten profitieren sollen. 

Wie Doktorandin Himashi Peiris berichtet, zielt das Konzept darauf ab, zwei Komponenten eines "dual view"-Systems gewissermaßen in Wettbewerb zueinander zu setzen: "Ein Teil der KI versucht zu imitieren, wie Radiologen medizinische Bilder lesen, indem sie diese beschriften. Der andere Teil des Systems beurteilt daraufhin die Qualität der KI-erzeugten Label, indem er sie mit beschrifteten Scans von menschlichen Radiologen vergleicht", so Peiris. Üblicherweise beschriften Radiologen medizinische Scans von Hand, um relevante Bereiche wie Tumore hervorzuheben. Diese Beschriftungen können dann als Anleitung oder Überwachung für das Training von KI-Modellen herangezogen werden. "Diese Methode beruht auf der subjektiven Interpretation von Einzelpersonen und ist daher zeitaufwändig und fehleranfällig. Zudem wird dadurch die Wartezeit für Patienten verlängert, die auf eine Behandlung warten."

Im Gegensatz zu Algorithmen, die auf große Mengen gelabelter Daten angewiesen sind, zeigt er selbst bei begrenzten Annotationen eine bemerkenswerte Leistung

Himashi Peiris

Das von den Monash-Forschern entwickelte System ermöglicht es den Algorithmen, mit gelabelten und nicht gelabelten Daten zu arbeiten und von den Vorhersagen der jeweils anderen KI zu lernen, um eine höhere Gesamtgenauigkeit zu erzielen. 

"Bei den drei öffentlich zugänglichen medizinischen Datensätzen erzielten wir bei einem Anteil von 10% gelabelter Daten eine durchschnittliche Verbesserung von 3% im Vergleich zu den bisher besten Ansätzen unter identischen Bedingungen", so Peiris. "Unser Algorithmus nutzt Techniken des halbüberwachten Lernens und übertrifft damit die bisherigen State-of-the-Art-Methoden. Im Gegensatz zu Algorithmen, die auf große Mengen gelabelter Daten angewiesen sind, zeigt er selbst bei begrenzten Annotationen eine bemerkenswerte Leistung. So kann die KI fundierter entscheiden, ihre ursprünglichen Einschätzungen validieren und genauere Diagnosen und Behandlungsentscheidungen treffen." 

Als nächstes wollen die Forscher die Anwendung auf verschiedene Typen medizinischer Bilder ausweiten und ein eigenes End-to-End-Produkt entwickeln, das Radiologen in ihrer Praxis einsetzen können. 


Quelle: Monash University

27.07.2023

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Bildgebung, KI & Proteomik

'Deep Visual Proteomics' soll Krebsdiagnostik revolutionieren

Ein deutsch-dänisches Forscherteam hat eine Technologie entwickelt, die mit zellspezifischen, protein-basierten Informationen hilft, Krebserkrankungen besser zu analysieren.

Photo

News • Meilenstein für KI

ChatGPT: Neue Version besteht Radiologen-Prüfung

Die neueste Version von ChatGPT hat eine Radiologie-Prüfung der RSNA bestanden. Das unterstreiche das Potenzial großer Sprachmodelle, zeige aber auch Grenzen auf, so Experten.

Photo

News • Künstliche Intelligenz

KI-Anwendungen in der Medizin sicherer machen

Die Hochschule Landshut startet Forschungsprojekt mit dem Münchner KI-Unternehmen deepc, um die Sicherheitsstandards bei der Anwendung von Künstlicher Intelligenz in der medizinischen Bildgebung zu…

Verwandte Produkte

REiLI

Artificial Intelligence

Fujifilm · REiLI

FUJIFILM Europe GmbH
Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon · Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
CT Image Reconstruction

Artificial Intelligence

Canon · CT Image Reconstruction

Canon Medical Systems Europe B.V.
FDR EX-M1 AI box

Artificial Intelligence

Fujifilm · FDR EX-M1 AI box

FUJIFILM Europe GmbH
Vantage Elan NX Edition

1.5 Tesla

Canon · Vantage Elan NX Edition

Canon Medical Systems Europe B.V.
Newsletter abonnieren