model of human hand skeleton with metal implants

Bildquelle: ETH Zürich

News • Bioresorbierbares Magnesium

Abbau von Metall-Implantaten im Körper unter der Lupe

Erstmals konnten Forscher der ETH Zürich die Korrosion von Magnesiumlegierungen für biomedizinische Anwendungen auf der Nanoskala beobachten. Dies ist ein wichtiger Schritt, um bessere Vorhersagen darüber zu treffen, wie schnell Implantate im Körper abgebaut werden und so massgeschneiderte Implantatwerkstoffe entwickelt werden können.

Die Forscher veröffentlichten ihre Ergebnisse jetzt im Journal Advanced Materials.

Magnesium und seine Legierungen halten vermehrt Einzug in die Medizin: einerseits als Material für Implantate in der Knochenchirurgie wie Schrauben oder Platten, andererseits als Material für Stents, um bei kardiovaskulären Eingriffen verengte Herzkranzgefäße aufzuweiten. Das Leichtmetall hat gegenüber herkömmlichen Implantaten aus Edelstahl, Titan oder Polymeren den Vorteil, dass es bioresorbierbar ist. Somit ist keine zweite Operation nötig, um die Implantate wieder aus dem Körper von Patienten zu entfernen. Magnesium fördert zudem das Knochenwachstum, was die Heilung von Knochenbrüchen aktiv unterstützt.

Reines Magnesium eignet sich allerdings nicht für solche chirurgischen Anwendungen, da es zu weich ist. Um die nötige Festigkeit zu erreichen, müssen daher Legierungselemente hinzugefügt werden. Üblicherweise sind dies Elemente der Seltenen Erden wie Yttrium und Neodym. Da diese jedoch körperfremd sind, können sie sich beim Abbau der Implantate in Organen ansammeln – mit unzureichend verstandenen Folgen. Insbesondere für Kinder sind solche Implantate deshalb ungeeignet.

Photo
Legierungen aus Magnesium, Zink und Kalzium eignen sich für bioresorbierbare Implantate, mit denen beispielsweise Knochenbrüche fixiert werden können.

Bildquelle: ETH Zürich

Forscher des Labors für Metallphysik und Technologie von ETH-Professor Jörg Löffler haben daher eine neue Familie von Legierungen entwickelt, welche nebst Magnesium ausschließlich die Elemente Zink und Kalzium enthalten. Deren Anteil ist in diesen Legierungen mit Absicht sehr gering gewählt und liegt unterhalb von einem Prozent.

Wie Magnesium sind auch diese Elemente biokompatibel und können vom menschlichen Körper resorbiert werden. Je nach Herstellungsverfahren bilden sich in den neu entwickelten Legierungen Ausscheidungen aus, die aus den drei Legierungselementen zusammengesetzt sind. Diese Ausscheidungen sind unterschiedlich häufig und verschieden gross, und messen oft nur wenige Dutzend Nanometer. Für gute mechanische Eigenschaften sind diese jedoch essentiell und beeinflussen möglicherweise die Korrosionsgeschwindigkeit des Materials.

Doch noch steht dem breiten chirurgischen Einsatz dieser körperverträglichen Magnesiumlegierungen ein Hindernis im Weg: Die Forschung weiß zu wenig über die Mechanismen, mit denen die Metallteile im Körper unter sogenannten physiologischen Bedingungen abgebaut werden. Deswegen sind auch brauchbare Voraussagen darüber, wie lange ein solches Implantat im Körper verbleibt, bisher kaum möglich.

Photo
Mithilfe modernster Technik konnten ETH-​Forschende einen bisher nicht dokumentierten Entlegierungsmechanismus in Magnesiumlegierungen beobachten.

Grafik: Laboratorium für Metallphysik und Technologie / ETH Zürich

Mittels analytischer Transmissionselektronenmikroskopie (TEM) konnten Jörg Löffler und seine Kollegen Martina Cihova und Robin Schäublin nun die strukturellen und chemischen Veränderungen von Magnesiumlegierungen unter simulierten physiologischen Bedingungen ab weniger Sekunden bis hin zu Stunden im Detail beobachten, und zwar in einer bisher unerreichten Auflösung von einigen Nanometern.

Mithilfe dieser modernen Technik, die an der ETH Zürich durch das Kompetenzzentrum "ScopeM" zur Verfügung steht, konnten die Forschenden einen bisher nicht beobachteten Entlegierungsmechanismus ("Dealloying") dokumentieren, der den Abbau der Ausscheidungen in der Magnesiummatrix maßgeblich bestimmt.

Sie konnten fast in Echtzeit beobachten, wie aus den Ausscheidungen während ihres Kontakts mit simulierter Körperflüssigkeit Kalzium- und Magnesiumionen austreten, wohingegen Zinkionen zurückbleiben und sich anreichern (s. Grafik). Dadurch verändert sich die chemische Zusammensetzung der Ausscheidungen kontinuierlich. Dies führt bei den Ausscheidungen auch dazu, dass sich ihre elektrochemische Aktivität dynamisch verändert und sie damit den Materialabbau insgesamt beschleunigen.

"Diese Erkenntnis stößt das bisherige Dogma um. Bisher nahm die Forschung nämlich an, dass die chemische Zusammensetzung der Ausscheidungsphasen in Magnesiumlegierungen während der Korrosion unverändert bleibt", sagt Löffler. Diese Annahme habe dazu geführt, dass die meisten Voraussagen über die Dauer des Abbaus falsch waren. "Der von uns beobachtete Mechanismus scheint universell zu sein und wir gehen davon aus, dass er sowohl in anderen Magnesiumlegierungen als auch in anderen aktiven Materialien mit intermetallischen Ausscheidungen auftritt", ergänzt Martina Cihova, Doktorandin von Jörg Löffler und Erstautorin der Studie.

Dank der neuen Erkenntnisse ist es nun möglich, Magnesiumlegierungen so zu designen, dass deren Abbauverhalten im Körper besser vorausgesagt und genauer kontrolliert werden kann. Dies ist essenziell, weil Magnesiumimplantate im Körper von Kindern wesentlich schneller abgebaut werden können als von Erwachsenen. Die Abbaurate von Magnesiumlegierungen für Stents sollte zudem erheblich langsamer sein als die für Knochenplatten oder -schrauben. "Mit dem Wissen über das detaillierte Korrosionsverhalten sind wir dem Ziel maßgeschneiderter Legierungen für unterschiedliche Patienten und medizinische Anwendungen einen entscheidenden Schritt näher gekommen", sagt Cihova. Das Verständnis über die agierenden Korrosionsmechanismen will sie nun im Rahmen ihres Postdoktorats durch elektronenmikroskopische Analysen an in vivo-Implantaten weiter ausbauen.


Quelle: ETH Zürich

23.10.2019

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • 'Mikro-Massage' im Bein

Künstliche Muskeln für bessere Heilung von Knochenbrüchen

Ingenieurwissenschaftler, Mediziner und Informatiker stellen auf der Hannover Messe den Prototypen eines smarten Implantats vor, das den Heilungsprozess nach Frakturen unterstützen soll.

Photo

News • Projekt zu Knochenersatz bewilligt

Nach Oberschenkelhalsbruch: Wie wächst ein Implantat am besten ein?

Ein Forschungsteam der Medizinischen Fakultät der UDE will genauer untersuchen, welche Prozesse unmittelbar nach der Implantation einer Oberschenkelhals-Prothese ablaufen.

Photo

News • Mathematik hilft Medizin

Implantate: Simulation sagt Knochenveränderungen voraus

Ein Forschungsprojekt an der Technischen Hochschule Nürnberg Georg Simon Ohm unterstützt die Medizin, indem es eine Simulation für Umbauprozesse am Knochen entwickelt.

Verwandte Produkte

Newsletter abonnieren