Neurologie

Tanz der Neurone

Wie synaptische Kopplungen im Gehirn die Nervenzellen zur koordinierten Zusammenarbeit zwingen.

Das Gemälde „Der Kinderreigen“ von Hans Thoma (1839 – 1924) bietet eine...
Das Gemälde „Der Kinderreigen“ von Hans Thoma (1839 – 1924) bietet eine metaphorische Illustration für Korrelationen höherer Ordnung in neuronalen Netzwerken: Neurone können sich – wie im Tanz – dynamisch als Gruppe organisieren.
Quelle: Staatliche Kunsthalle Karlsruhe

Es ist der perfekt abgestimmte Tanz der Neurone, der es Menschen ermöglicht zu sehen, zu hören, zu riechen, sich zu bewegen, sich zu erinnern und nachzudenken. Doch eine gelungene Choreografie setzt einen reibungslosen Austausch von Signalen voraus. Allein aus diesem Grund untersuchen Forscherinnen und Forscher Paarbeziehungen zwischen Neuronen. Doch was geschieht, wenn sich mehr als zwei Neurone zum Tanz zusammenschließen? Mit dieser Frage haben sich Stojan Jovanović und Prof. Dr. Stefan Rotter vom Bernstein Center Freiburg (BCF) der Albert-Ludwigs-Universität und dem Exzellenzcluster BrainLinks-BrainTools auseinandergesetzt. Mit einer Kombination aus mathematischen Gedankenexperimenten und biophysikalisch inspirierten Simulationen am Computer konnten sie die in früheren Studien entwickelten Ideen zu Paarwechselwirkungen auf den Fall von Korrelationen dritter Ordnung, also Wechselbeziehungen von drei Neuronen, erweitern. Die Ergebnisse tragen dazu bei, die Aktivität des neuronalen Netzwerks besser zu verstehen.

Im Gehirn ermöglichen verschiedene Typen von Synapsen eine effiziente Kommunikation auf der Basis elektro-chemischer Botschaften. Wie genau aber das synaptische Kommunikationsnetzwerk das neuronale Ballett bestimmt, ist weitgehend unbekannt. „In einem Experiment zur Erforschung dieser Frage kann aus der unglaublich großen Anzahl beteiligter Neurone immer nur ein sehr kleiner Teil gleichzeitig beobachtet werden, aus rein technischen Gründen“, erläutert Jovanović. Aus diesem Grund sei es derzeit praktisch unmöglich, das koordinierte Zusammenwirken großer Zellverbände im Gehirn vollständig zu überblicken.

„Eine einflussreiche Theorie des Lernens besagt, dass es zunächst nur auf die beiden Neurone ankommt, die über eine konkrete Synapse kommunizieren“, erklärt Rotter. „Zwingt sie die Aktivierung des Netzwerks zu einem bestimmen Tanzschritt, dann verstärkt sich die Synapse. Geraten sie durch den Einfluss des Netzwerks aus dem Takt, dann schwächt sich die Synapse ab.“ Um herauszufinden, welche Rolle in diesem Zusammenhang so genannte Korrelationen dritter Ordnung spielen, haben die Forscher ein mathematisches Modell, den Hawkes-Prozess, angewandt. Damit ist es ihnen gelungen, die relative Bedeutung neuronaler Dreiecksbeziehungen zu berechnen. Diese Erkenntnisse könnten dazu beitragen, aus der beobachteten elektrischen Aktivität von jeweils drei Nervenzellen Schlüsse über die strukturellen Eigenschaften des Netzwerks zu ziehen und davon vielleicht sogar neue synaptische Lernregeln im Gehirn abzuleiten.


Originalpublikation:
S. Jovanović, S. Rotter (2016). Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks. PLOS Computational Biology 12 (6): DOI:10.1371/journal.pcbi.1004963
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004963


Quelle: Albert-Ludwigs-Universität Freiburg im Breisgau

12.07.2016

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Autoimmunerkrankung

Multiple Sklerose: Neuer Ansatz repariert geschädigte Nervenhüllen

Bei MS schädigen fehlgeleitete Immunzellen die Hüllen der Nervenzellen im Gehirn. Forschende der MH Hannover haben einen Reparatur-Mechanismus entdeckt.

Photo

News • Knöcherner Komplize gegen Alzheimer, MS & Co.

Wie unser Schädel uns vor Hirnerkrankungen schützt

Ein Münchener Forscherteam hat einen überraschenden neuen Verbündeten im Kampf gegen Hirnerkrankungen ausgemacht: Unser eigener Schädelknochen.

Photo

News • Astroglia im Fokus

"Sekretomics"-Ansatz knackt Rätsel um Blut-Hirn-Schranke

Einige Erkrankungen wie Multiple Sklerose brechen erst aus, nachdem Immunzellen die Blut-Hirn-Schranke durchbrochen haben. Forscher fanden nun heraus, was dabei passiert.

Verwandte Produkte

Alphenix Biplane High Definition Detector

Bi-Plane

Canon · Alphenix Biplane High Definition Detector

Canon Medical Systems Europe B.V.
Magnetom Amira

1.5 Tesla

Siemens Healthineers · Magnetom Amira

Siemens Healthcare GmbH
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030 CL (IVD)/ CLAM-2030 (RUO)

Mass Spectrometry

Shimadzu – CLAM-2030 CL (IVD)/ CLAM-2030 (RUO)

Shimadzu Europa GmbH
Shimadzu – LCMS-8060NX CL (IVD) / LCMS-8060 NX (RUO)

Mass Spectrometry

Shimadzu – LCMS-8060NX CL (IVD) / LCMS-8060 NX (RUO)

Shimadzu Europa GmbH
Newsletter abonnieren