Neues EU-Projekt CORONET

Schnittstellen zwischen dem Gehirn und elektrischen Schaltkreisen in technischen Geräten oder Computern eröffnen neue Perspektiven für Grundlagenforschung und medizinische Anwendung, z.B. bei der therapeutischen Hirnstimulation oder der Neuroprothetik.

Kooperationspartner im EU-Projekt CORONET (von links nach rechts): Mathew...
Kooperationspartner im EU-Projekt CORONET (von links nach rechts): Mathew Diamond (SISSA, Trieste), Shimon Marom (Technion, Haifa), Jochen Braun (Otto-von-Guericke University Magdeburg), Gustavo Deco (University Pompeu Fabra, Barcelona), Rene Schüffny (Technical University Dresden), Paolo Del Giudice (Instituto Superiore di Sanità, Rom).
Foto: Paolo del Giudice
Kooperationspartner im EU-Projekt CORONET (von links nach rechts): Mathew...
Kooperationspartner im EU-Projekt CORONET (von links nach rechts): Mathew Diamond (SISSA, Trieste), Shimon Marom (Technion, Haifa), Jochen Braun (Otto-von-Guericke University Magdeburg), Gustavo Deco (University Pompeu Fabra, Barcelona), Rene Schüffny (Technical University Dresden), Paolo Del Giudice (Instituto Superiore di Sanità, Rom).
Foto: Paolo del Giudice

Das neue EU-Projekt CORONET wird die technologischen und theoretischen Voraussetzungen für solche zukünftigen „bio-hybriden“ Schnittstellen zwischen natürlichen und künstlichen neuronalen Schaltkreisen schaffen.

Die Europäische Kommission unterstützt das Projekt mit 2.7 M€ aus dem 7. Rahmenprogramm. CORONET erreichte die beste Bewertung aller 39 Projektvorschläge in der Kategorie "Brain-inspired Computing“.
Die Grundidee von CORONET ist, die komplexe spontane Aktivität des lebenden Nervengewebes zu nutzen, statt gegen sie zu arbeiten. Zunächst soll die spontane Aktivität durch kontinuierliche, aber schwache, elektrische Stimulation "sanft" in eine gewünschte Richtung gesteuert werden. Dann soll das Nervengewebe an künstliche, elektronische Netzwerke gekoppelt werden, die ähnlich komplex reagieren wie das Gehirn. Mithilfe dieser Kopplung sollen bestimmte, sich spontan herausbildende Aktivitätszustände des Nervengewebes "ausgelesen" werden.

Als künstliche Netzwerke sollen zunächst Computer-Simulationen von neuronalen Netzen eingesetzt werden. In einem zweiten Schritt sollen dazu echte, elektronische integrierte Schaltkreise gebaut werden, die nach den Prinzipien der Hirnfunktion arbeiten ("Neuromorophic VLSI"). Das Fernziel des Projekts ist die nahtlose Kommunikation zwischen elektronischen Schaltkreisen und lebendem Nervengewebe.

Sechs etablierte Wissenschaftler aus Magdeburg, Dresden, Trieste, Rom, Haifa, und Barcelona beteiligen sich an dieser europäischen Kooperation unter der Leitung von Prof. J. Braun (Otto-von-Guericke Universität Magdeburg). Die geplanten Arbeiten bauen auf Vorarbeiten der Bernstein Gruppe Magdeburg auf, die ebenfalls von Prof. Braun geleitet und vom Bundesministerium für Bildung und Forschung (BMBF) unterstützt wurde.

Weitere Informationen:

http://kobi.nat.uni-magdeburg.de - Arbeitsgruppe Kognitive Biologie

http://www.bgcn.ovgu.de/ - Bernstein Gruppe Magdeburg
 

02.12.2010

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Drei neue Partner

Biobank-Allianz erhält Zuwachs

Die German Biobank Alliance (GBA) heißt drei neue Partner-Biobanken willkommen: Ab sofort arbeiten 18 Biobankstandorte und zwei IT-Entwicklungszentren in der deutschen Allianz akademischer Biobanken…

Photo

Medizintechnik

Bioprinting – Standards werden gebraucht

Bioprinting ist zwar noch eine recht neue Technologie, doch betrachten Fachleute sie als eine der bahnbrechendsten Innovationen für die Zukunft der Medizin. Und obwohl das Potenzial für den…

Photo

Quantifizierbare MR-Gewebeanalyse

MR-Fingerprinting steht für Forschung zur Verfügung

Siemens Healthineers präsentiert auf dem ISMRM (International Society for Magnetic Resonance in Medicine) in Montréal, Kanada, als erster Anbieter weltweit das…

Verwandte Produkte

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH