Neues EU-Projekt CORONET

Schnittstellen zwischen dem Gehirn und elektrischen Schaltkreisen in technischen Geräten oder Computern eröffnen neue Perspektiven für Grundlagenforschung und medizinische Anwendung, z.B. bei der therapeutischen Hirnstimulation oder der Neuroprothetik.

Kooperationspartner im EU-Projekt CORONET (von links nach rechts): Mathew...
Kooperationspartner im EU-Projekt CORONET (von links nach rechts): Mathew Diamond (SISSA, Trieste), Shimon Marom (Technion, Haifa), Jochen Braun (Otto-von-Guericke University Magdeburg), Gustavo Deco (University Pompeu Fabra, Barcelona), Rene Schüffny (Technical University Dresden), Paolo Del Giudice (Instituto Superiore di Sanità, Rom).
Foto: Paolo del Giudice
Kooperationspartner im EU-Projekt CORONET (von links nach rechts): Mathew...
Kooperationspartner im EU-Projekt CORONET (von links nach rechts): Mathew Diamond (SISSA, Trieste), Shimon Marom (Technion, Haifa), Jochen Braun (Otto-von-Guericke University Magdeburg), Gustavo Deco (University Pompeu Fabra, Barcelona), Rene Schüffny (Technical University Dresden), Paolo Del Giudice (Instituto Superiore di Sanità, Rom).
Foto: Paolo del Giudice

Das neue EU-Projekt CORONET wird die technologischen und theoretischen Voraussetzungen für solche zukünftigen „bio-hybriden“ Schnittstellen zwischen natürlichen und künstlichen neuronalen Schaltkreisen schaffen.

Die Europäische Kommission unterstützt das Projekt mit 2.7 M€ aus dem 7. Rahmenprogramm. CORONET erreichte die beste Bewertung aller 39 Projektvorschläge in der Kategorie "Brain-inspired Computing“.
Die Grundidee von CORONET ist, die komplexe spontane Aktivität des lebenden Nervengewebes zu nutzen, statt gegen sie zu arbeiten. Zunächst soll die spontane Aktivität durch kontinuierliche, aber schwache, elektrische Stimulation "sanft" in eine gewünschte Richtung gesteuert werden. Dann soll das Nervengewebe an künstliche, elektronische Netzwerke gekoppelt werden, die ähnlich komplex reagieren wie das Gehirn. Mithilfe dieser Kopplung sollen bestimmte, sich spontan herausbildende Aktivitätszustände des Nervengewebes "ausgelesen" werden.

Als künstliche Netzwerke sollen zunächst Computer-Simulationen von neuronalen Netzen eingesetzt werden. In einem zweiten Schritt sollen dazu echte, elektronische integrierte Schaltkreise gebaut werden, die nach den Prinzipien der Hirnfunktion arbeiten ("Neuromorophic VLSI"). Das Fernziel des Projekts ist die nahtlose Kommunikation zwischen elektronischen Schaltkreisen und lebendem Nervengewebe.

Sechs etablierte Wissenschaftler aus Magdeburg, Dresden, Trieste, Rom, Haifa, und Barcelona beteiligen sich an dieser europäischen Kooperation unter der Leitung von Prof. J. Braun (Otto-von-Guericke Universität Magdeburg). Die geplanten Arbeiten bauen auf Vorarbeiten der Bernstein Gruppe Magdeburg auf, die ebenfalls von Prof. Braun geleitet und vom Bundesministerium für Bildung und Forschung (BMBF) unterstützt wurde.

Weitere Informationen:

http://kobi.nat.uni-magdeburg.de - Arbeitsgruppe Kognitive Biologie

http://www.bgcn.ovgu.de/ - Bernstein Gruppe Magdeburg
 

02.12.2010

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Reha-Technologie

Nach Schlaganfall: Neuroprothese aktiviert neue Verbindungen im Gehirn

Intelligente Orthesen sollen Menschen nach einem Schlaganfall helfen, verloren gegangene Funktionen wiederzuerlangen. Forscher haben hierfür ein weiteres wichtiges Puzzlteil gefunden.

Photo

News • High-Tech-Standort in Minden-Lübbecke

KI in der Radiologie: Kooperation für neues Forschungslabor

Mit einer Technologie- und Forschungspartnerschaft mit Siemens Healthineers bekräftigt das Universitätsinstitut für Radiologie, Neuroradiologie und Nuklearmedizin der Mühlenkreiskliniken seinen…

Photo

News • Kleiner als ein Reiskorn

Mikro-Roboter schwimmt mit Magnetkraft durch den Körper

Am Institut für Medizintechnik der Universität zu Lübeck und der Fraunhofer-Einrichtung für Individualisierte und Zellbasierte Medizintechnik IMTE werden winzig kleine, schwimmende Roboter…

Verwandte Produkte

Canon – Alphenix Biplane High Definition Detector

Bi-Plane

Canon – Alphenix Biplane High Definition Detector

Canon Medical Systems Europe B.V.
Canon – Vitrea Advanced Visualization

Reading

Canon – Vitrea Advanced Visualization

Canon Medical Systems Europe B.V.
KABE Labortechnik – Consumables for pathology / histology

Histology Equipment

KABE Labortechnik – Consumables for pathology / histology

KABE LABORTECHNIK GmbH
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Mass Spectrometry

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Newsletter abonnieren