Hitzeschockproteine

Im Krisenfall HSF1

Ein Unfall oder ein Wohnungsbrand ‒ im Notfall rufen wir die Polizei und Feuerwehr. Eine Einsatzzentrale koordiniert schnelle Hilfe. Auch in den Zellen unseres Körpers gibt es Krisenhelfer, die sogenannten Hitzeschockproteine. Sie kommen bei zellulärem Stress wie erhöhter Temperatur, UV-Strahlung, oder auch bei Krebs zum Einsatz. Hitzeschockproteine helfen anderen Proteinen ihre funktionelle Struktur aufrechtzuerhalten und geschädigte Proteine abzubauen. So wird der zellulären Ausnahmesituation entgegengewirkt.

Für eine stabile Interaktion von HSF1 und DNA lagern sich drei HSF1-Moleküle...
Für eine stabile Interaktion von HSF1 und DNA lagern sich drei HSF1-Moleküle (weiß, blau, grau) zusammen. So wird die Produktion von zellulären Krisenhelfern, den Hitzeschockproteinen aktiviert.
Quelle: MPI für Biochemie/Tobias Neudegger

Wie der Mitarbeiter einer Einsatzzentrale, fungiert in den Zellen HSF1, der Hitzeschock-Transkriptionsfaktor 1. Es bindet an bestimmte DNA-Sequenzen, die die Bauanleitungen der zellulären Helfer kodieren. Durch die Aktivierung von HSF1 wird die Produktion der funktionellen Hitzeschockproteine angeworfen.

Wie HSF1 genau an die DNA bindet hat jetzt Andreas Bracher zusammen mit seinem Team in der Abteilung für Zelluläre Biochemie von Professor Hartl am Max-Planck-Institut für Biochemie in Martinsried gezeigt. „Mittels der Röntgenstrukturanalyse haben wir die exakte Anordnung der Moleküle untersucht“, erklärt Tobias Neudegger aus Brachers Team und Erstautor der Studie. Proteine bestehen aus langen Ketten von Aminosäuren die eine bestimmte dreidimensionale Struktur annehmen um funktionell aktiv zu sein.

„Wir konnten zeigen, wie sich beim zellulären Stress drei identische HSF1-Moleküle zusammenlagern. Erst so entsteht eine stabile DNA-HSF1-Verbindung. Ist HSF1 nicht an DNA gebunden, liegt jedes einzelne HSF1-Molekül in einem inaktiven Zustand in der Zelle vor“, erklärt Neudegger weiter.

Auch für die Behandlung von Krankheiten kann die vermehrte Produktion von Hitzeschock-proteinen von Vorteil sein. „Da wir jetzt die Struktur von HSF1 kennen, können Medikamente entwickelt werden, die HSF1 aktivieren oder deaktivieren und so die zellulären Helfer herstellen oder deren Herstellung hemmen“, erklärt Bracher die zukünftige Richtung der HSF1-Forschung. So könnten falsch gefaltete Proteine in den Zellen repariert werden oder kaputte Proteine besser abgebaut werden. Fehlgefaltete Proteine gibt es vor allem in der Huntingtonkrankheit, Alzheimer und Parkinson, sowie auch in Krebszellen.


Originalpublikation:
T. Neudegger, J. Verghese, M. Hayer-Hartl, F. U. Hartl & A. Bracher: Structure of human heat-shock transcription factor 1 in complex with DNA. Nature Structural & Molecular Biology, Februar 2016
DOI: 10.1038/nsmb.3149

Quelle: Max-Planck-Institut für Biochemie

02.03.2016

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Forschung

Ohne R-loops keine gesunde Zellentwicklung

Forscher der Universität von Edinburgh haben bei der Entwicklung gesunder Zellen die Rolle entscheidender Moleküle identifiziert. Die sogenannten "R-loops" werden bei der Zellentwicklung…

Photo

Schaltplan des Lebens

Wie arbeiten Gene in komplexen Geweben zusammen?

Wie ist die Aktivität aller Gene in Zellen höherer Organismen miteinander verschaltet? Und wie sind die genetischen Schaltpläne der Zellen in komplexen Geweben untereinander koordiniert?…

Photo

Hirntumoren

Typische Mutation in Krebszellen legt das Immunsystem lahm

Der Austausch eines einzelnen Aminosäurebausteins in einem Stoffwechselenzym kann nicht nur den Grundstein für eine Krebserkrankung legen. Er kann auch das Immunsystem aushebeln. Damit blockiert er…

Verwandte Produkte

Agena Bioscience - MassARRAY Colon Panel

Amplification/Detection

Agena Bioscience - MassARRAY Colon Panel

Agena Bioscience GmbH
Eppendorf - BioSpectrometer fluroescence

Research use only (RUO)

Eppendorf - BioSpectrometer fluroescence

Eppendorf AG
Eppendorf - Mastercycler nexus X2

Research use only (RUO)

Eppendorf - Mastercycler nexus X2

Eppendorf AG
Eppendorf - μCuvette G1.0

Research use only (RUO)

Eppendorf - μCuvette G1.0

Eppendorf AG