Komplexe Formen

3D-Druck jetzt auch mit Glas möglich

Dreidimensionales Drucken ermöglicht das Herstellen äußerst kleiner und komplexer Strukturen auch in kleiner Serie. Durch ein am Karlsruher Institut für Technologie (KIT) entwickeltes Verfahren lässt sich erstmals auch Glas für diese Technik nutzen. Aufgrund seiner Eigenschaften wie Transparenz, Hitzebeständigkeit und Säureresistenz eröffnen sich mit der Verwendung von Glas im 3D-Druck vielfältige neue Anwendungsmöglichkeiten für die Fertigung und Forschung, zum Beispiel in der Optik, der Datenübertragung und Biotechnologie.

Liquid Glass Nanokomposite können wie Polymere abgeformt werden.
Liquid Glass Nanokomposite können wie Polymere abgeformt werden.
Quelle: Karlsruher Institut für Technologie
Komplizierte, hochgenaue Strukturen aus Glas lassen sich durch eine am KIT...
Komplizierte, hochgenaue Strukturen aus Glas lassen sich durch eine am KIT entwickelte Methode im 3D-Druck fertigen.
Quelle: Karlsruher Institut für Technologie

Glas ist einer der ältesten Werkstoffe der Menschheit. Jetzt lässt sich das schon im alten Ägypten und antiken Rom verwendete Material auch mit der Fertigungstechnik des 21. Jahrhunderts verarbeiten. Ein interdisziplinäres Team am KIT um den Maschinenbauingenieur Dr. Bastian E. Rapp hat ein Verfahren entwickelt, mit dem sich Glas für die additive Fertigungstechnik nutzen lässt. Die Forscher mischen Nanopartikel hochreinen Quarzglases mit einer kleinen Menge flüssigen Kunststoffs und lassen diese Mischung durch Licht - mittels Stereolithografie - an bestimmten Stellen aushärten. Das flüssig gebliebene Material wird in einem Lösungsmittelbad herausgewaschen, so bleibt nur die gewünschte, ausgehärtete Struktur bestehen. Der in dieser Glasstruktur noch eingemischte Kunststoff wird anschließend durch Erhitzen entfernt. „Die Form ähnelt zunächst einem Sandkuchen, sie ist zwar geformt, aber instabil, deshalb wird das Glas in einem letzten Schritt gesintert, also so weit erhitzt, dass die Glaspartikel miteinander verschmelzen“, erklärt Rapp. Er forscht am KIT am Institut für Mikrostrukturtechnik und leitet eine Arbeitsgruppe, der Chemiker, Elektrotechniker und Biologen angehören. Unter dem Titel „Three-Dimensional Printing of Transparent Fused Silica Glass“ stellen die Wissenschaftler das Verfahren in der Fachpublikation Nature vor.
 
Die verschiedenen Techniken des 3D-Drucks eigneten sich bislang zwar für die Verwendung von Kunststoffen oder Metallen, nicht jedoch für Glas. Wurde Glas bisher, zum Beispiel durch Schmelzen und Applizieren mittels einer Düse, zu Strukturen verarbeitet, wurde die Oberfläche sehr rau, das Material war porös und enthielt Hohlräume. „Wir stellen eine neue Methode vor, die eine Innovation in der Materialprozessierung bedeutet. Das Material des gefertigten Stücks ist hochreines Quarzglas mit seinen entsprechenden chemischen und physikalischen Eigenschaften“, so Rapp. Die von den Wissenschaftlern am KIT gefertigten gläsernen Strukturen weisen Auflösungen im Bereich weniger Mikrometer auf - ein Mikrometer entspricht einem Tausendstel Millimeter. „Die Abmessung der Strukturen kann aber im Bereich mehrerer Zentimeter liegen“, betont Rapp.
 
Einsetzen ließe sich 3D-geformtes Glas zum Beispiel in der Datentechnik. „Die übernächste Generation von Computern wird mit Licht rechnen, das erfordert komplizierte Prozessorstrukturen, mit Hilfe der 3D-Technik könnten beispielsweise kleine, komplexe Strukturen aus einer Vielzahl kleinster, unterschiedlich ausgerichteter optischer Komponenten hergestellt werden“, erläutert der Maschinenbauingenieur. Für die biologische und medizinische Technik ließen sich kleinste Analyse-Systeme aus Miniatur-Glasröhrchen fertigen. Zudem könnten 3D-geformte Mikrostrukturen aus Glas in unterschiedlichsten Anwendungsgebieten der Optik zum Einsatz kommen, vom Brillenglas mit besonderen Anforderungen bis zur Linse der Laptop-Kamera.
 
Die Entwicklung der Forscher um Nachwuchsgruppenleiter Bastian E. Rapp ist ein Ergebnis im Zuge der Nachwuchsförderung „NanoMatFutur“, mit der das Bundesministerium für Bildung und Forschung (BMBF) die Entwicklung von Werkstoffinnovationen für Industrie und Gesellschaft unterstützt. Die Arbeit der von Rapp geleiteten Forschergruppe wird vom BMBF seit 2014 für insgesamt vier Jahre mit rund 2,8 Millionen Euro gefördert. „Unsere Forschung profitiert sehr vom interdisziplinären Miteinander verschiedener Institute am KIT, so sind neben dem Institut für Mikrostrukturtechnik unter anderem Kollegen vom Institut für Nukleare Entsorgung und vom Institut für Angewandte Materialien an dem Projekt beteiligt“, sagt Rapp.   


Quelle: Karlsruher Institut für Technologie

21.04.2017

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Präzise Modelle

Gefäße aus dem 3D-Drucker helfen bei Aortenaneurysmen

Bereits sieben Menschen konnten die Gefäßmediziner am Universitätsklinikum Leipzig dank eines Gefäßmodells aus dem 3D-Drucker helfen und damit deren Leben retten. Denn ein individuell erstelltes…

Photo

Medizintechnik

Bioprinting – Standards werden gebraucht

Bioprinting ist zwar noch eine recht neue Technologie, doch betrachten Fachleute sie als eine der bahnbrechendsten Innovationen für die Zukunft der Medizin. Und obwohl das Potenzial für den…

Photo

Bioprinting

Biologisches Gewebe aus dem 3D-Drucker

Die Medizin der Zukunft ist biologisch: Zerstörtes Gewebe wird künftig durch biologisch funktionelles Gewebe aus dem 3D-Drucker ersetzt. Ein Forscherteam des Fraunhofer-Instituts für…

Verwandte Produkte

Agfa HealthCare – Drystar 5301

Printer

Agfa HealthCare – Drystar 5301

Agfa HealthCare
Agfa HealthCare – Drystar 5302

Printers

Agfa HealthCare – Drystar 5302

Agfa HealthCare
Agfa HealthCare – Drystar 5503

Printers

Agfa HealthCare – Drystar 5503

Agfa HealthCare
Agfa HealthCare – Drystar Axys

Printers

Agfa HealthCare – Drystar Axys

Agfa HealthCare
Beckman Coulter – Remisol Advance

LIS, Middleware, POCT

Beckman Coulter – Remisol Advance

Beckman Coulter, Inc.