The new exosome-based nanomedicines enhanced tumor accumulation, extravasation...
The new exosome-based nanomedicines enhanced tumor accumulation, extravasation from blood vessels and penetration into deep tumor parenchyma after intravenous administration.

Photo: Santos Lab                    

News • Targeted treatment

New nanomedi­cine for efficient cancer chemo­ther­apy

Researchers at the University of Helsinki in collaboration with researchers from Åbo Akademi University (Finland) and Huazhong University of Science and Technology (China) have developed a new anti-cancer nanomedicine for targeted cancer chemotherapy. This new nano-tool provides a new approach to use cell-based nanomedicines for efficient cancer chemotherapy.

Exosomes contain various molecular constituents of their cell of origin, including proteins and RNA. Now the researchers have harnessed them together with synthetic nanomaterial as carriers of anticancer drugs. The new exosome-based nanomedicines enhanced tumor accumulation, extravasation from blood vessels and penetration into deep tumor parenchyma after intravenous administration. “This study highlights the importance of cell-based nanomedicines”, says the principal investigator and one of the corresponding authors of this study, Hélder A. Santos, Associate Professor at the Faculty of Pharmacy, University of Helsinki.

The researchers presented their findings in the journal Nature Communications.

This demonstrates the potential of the exosome-biomimetic nanoparticles to act as drug carriers to improve the anticancer drug efficacy

Hélder A. Santos

Nanoparticles-based drug delivery systems have shown promising therapeutic efficacy in cancer. To increase their targetability to tumors, nanoparticles are usually functionalized with targeted antibodies, peptides or other biomolecules. However, such targeting ligands may sometimes have a negative influence on the nanoparticle delivery owing to the enhanced immune-responses.

Biomimetic nanoparticles on the other hand combine the unique functionalities of natural biomaterials, such as cells or cell membranes, and bioengineering versatility of synthetic nanoparticles, that can be used as an efficient drug delivery platform. 

The developed biocompatible exosome-sheathed porous silicon-based nanomedicines for targeted cancer chemotherapy resulted in augmented in vivo anticancer drug enrichment in tumor cells. “This demonstrates the potential of the exosome-biomimetic nanoparticles to act as drug carriers to improve the anticancer drug efficacy”, Santos concludes. 


Source: University of Helsinki

13.09.2019

Related articles

Photo

Article •

Oral vaccination against pancreatic tumours

The world’s first gene cancer therapy study of an innovative oral vaccine is underway at the Surgical Clinic of Heidelberg University Hospital.

Photo

News • The role of tissue stiffness

Pancreatic cancer: new approach could reverse chemo resistance

Researchers at Stanford have demonstrated that conditions in the matrix surrounding pancreatic cancer cells impact whether those cells respond to chemotherapy.

Photo

News • New insights on shape and toxicity

Small, but mighty – how gold nanoparticles (actually) kill cancer

Smaller kills faster – this is what was previously thought about gold nanoparticles used to fight cancer cells. However, new research reveals a more complex picture of these interactions.

Related products

Subscribe to Newsletter