Neue Mikroskopiertechnik liefert Bilder von Zellprozessen

Eine neue Mikroskop-Technologie soll beim Kampf gegen Infektionskrankheiten, Altersdemenz und Krebs helfen. Die Methode heißt Fluoreszenz-Superauflösungs-Mikroskopie, macht selbst kleinste Biomoleküle sichtbar und liefert so ganz neue Bilder aus lebenden Zellen: live, in 3D und hoch präzise. An Grundlagen und Feintuning arbeiten Forscher der Technischen Universität (TU) Braunschweig jetzt in einem von der Universität Würzburg koordinierten Verbundprojekt des Bundesministeriums für Bildung und Forschung (BMBF) mit. Die Arbeiten allein in Braunschweig werden mit knapp 590.000 Euro gefördert.

Mikroskopisches „SMILEY“ aus einzelnen mit Laserlicht zum Leuchten...
Mikroskopisches „SMILEY“ aus einzelnen mit Laserlicht zum Leuchten gebrachten Molekülen gebaut. Links mit herkömmlichen Verfahren gemessen, rechts, nachdem die einzelnen Moleküle nacheinander aufblitzen und dadurch erheblich schärfer abgebildet werden können.
Mikroskopisches „SMILEY“ aus einzelnen mit Laserlicht zum Leuchten...
Mikroskopisches „SMILEY“ aus einzelnen mit Laserlicht zum Leuchten gebrachten Molekülen gebaut. Links mit herkömmlichen Verfahren gemessen, rechts, nachdem die einzelnen Moleküle nacheinander aufblitzen und dadurch erheblich schärfer abgebildet werden können.

Die neue Methode zur Biomolekülbobachtung arbeitet mit Licht. „Wir markieren Molekülstrukturen gezielt mit Farbstoffen und regen sie mit Laserlicht zum Leuchten an“, beschreibt Professor Philip Tinnefeld vom Institut für Physikalische und Theoretische Chemie der TU Braunschweig das Vorgehen. Diese Fluoreszenz lässt sich mit einem Mikroskop erkennen und mit einer Kamera festhalten. Allerdings dürfen nicht alle Moleküle gleichzeitig leuchten. „Dann sehen wir nur einen großen Fleck, den wir nicht deuten können“, sagt er. Deshalb schalten die Forscher die Fluoreszenz der Farbstoffe gezielt an oder aus. Mit einer Zugabe von Vitamin C zum Beispiel können sie einen natürlichen Aus-Zustand der Teilchenfluoreszenz verlängern. Wann welches markierte Teilchen in diesen Aus-Zustand geht, funktioniert nach dem Prinzip Zufall. Deshalb blitzen manche Teilchen auf, während andere noch „aus“ und erst später zu sehen sind. Mit diesen Momentaufnahmen können die Wissenschaftler einzelne Moleküle bis auf 20 Nanometer genau orten. Selbst Biomoleküle, die sehr dicht nebeneinander liegen, lassen sich auf diese Weise sicher auseinander halten.

Dass die Methode funktioniert, konnten die TU-Forscher schon zeigen. Jetzt wollen sie die Mechanismen dahinter genauer ins Visier nehmen und noch mehr Möglichkeiten zur Fluoreszenzkontrolle finden. „Das Ziel des Verbundprojektes ist, maßgeschneiderte Farb und- Zusatzstoffkombinationen für die Beobachtung verschiedener Arten Biomoleküle und Prozesse zu entwickeln“, berichtet Tinnefeld.

Außerdem konstruieren die Braunschweiger Forscher im Rahmen des Projektes Modellsubstanzen, mit denen sich die neuartigen Mikroskope kalibrieren lassen. „Die Zahl der Forschungsarbeiten zur Superauflösungs-Mikroskopie explodiert gerade“, berichtet Tinnefeld. „Doch bisher fehlt ein Standard, um die Ergebnisse vergleichen zu können.“ Auch wenn Messungen fehlschlagen, ist oft unklar, ob es an einer Geräteeinstellung oder an der Probe liegt. Verlässliche Vergleichsmessungen mit einem „nanoskopischen Lineal“ könnten das klären. In anderthalb Jahren wollen die Forscher dazu erste belastbare Ergebnisse präsentieren.

Das Projekt wird von der Universität Würzburg koordiniert. Beteiligt sind auch der Mikroskophersteller Carl Zeiss Microimaging in Jena, der Siegener Farbstoffspezialist Atto-Tec und Ibidi aus München, die Produkte für Zellanalytik liefern.

Bildrechte: TU Braunschweig, Institut für Physikalische und Theoretische Chemie

19.07.2011

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Video • Demenz im Blut erkennen

Neuer Bluttest: Alzheimer-Abklärung ohne Rückenmark-Punktion

Schleicht sich der Verdacht auf eine Alzheimer-Erkrankung ein, müssen sich die Betroffenen auf langwierige und aufwändige Prozeduren einstellen, bis der Fall klar ist. Ein Team der Empa und des…

Photo

News • Amyloide im Fokus

Röntgenlaser eröffnet neuen Blick auf Alzheimer-Proteine

Eine neue Untersuchungsmethode ermöglicht die Röntgenanalyse sogenannter Amyloide, einer Klasse großer, faserähnlicher angeordneter Biomoleküle, die unter anderem bei Krankheiten wie Alzheimer…

Photo

News • Strukturbiologie

Intaktes Virus erstmals atomgenau entschlüsselt

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete innovative Methode reduziert die für die…

Verwandte Produkte

Newsletter abonnieren