© samunella – stock.adobe.com

News • Prostatakrebs-Analyse

Mit KI und Multiomics gegen unnötige Entfernung der Prostata

Ob eine operative Entfernung der Prostata zur Behandlung von Prostatakrebs indiziert ist, wird derzeit anhand von Werten entschieden, die durch die Analyse von Gewebeproben gewonnen werden (Gleason-Score). Weil diese Methode invasiv und oft wenig verlässlich ist, suchen Wissenschafter weltweit nach schonenden und präziseren Alternativen.

Ein Forschungsteam der MedUni Wien hat nun ein neues Verfahren entwickelt, mit dem jene Patienten identifiziert werden können, für die eine chirurgische Therapie tatsächlich die beste Option darstellt. Unnötige Eingriffe bei Patienten mit geringerem Risiko für eine Ausbreitung des Tumors können so vermieden werden. Die Studie wurde kürzlich im Fachjournal „Theranostics“ publiziert

Das Forschungsteam um Lukas Kenner (Klinisches Institut für Pathologie der MedUni Wien), Jing Ning und Clemens Spielvogel (Universitätsklinik für Radiologie und Nuklearmedizin der MedUni Wien) verfolgte im Rahmen der Studie das Ziel, ein neues maschinelles Lernmodell zur präziseren Beurteilung des Tumors zu entwickeln. „Dazu haben wir die Multiomics-Technologie mit Anwendungen der künstlichen Intelligenz kombiniert“, betont Studienleiter Kenner den bisher einzigartigen Ansatz. Multiomics ist eine Methode in der medizinischen Forschung, bei der verschiedene „Omics“-Datenquellen wie genetische Informationen (Genomics), bildgebende Merkmale (Radiomics) und Ergebnisse aus pathologischen Untersuchungen (Pathomics) integriert werden. Diese in ein KI-Modell eingespeiste Vielzahl an Daten stammt von 146 Patienten, die sich zwischen Mai 2014 und April 2020 einer operativen Entfernung der Prostata (radikale Prostatektomie) unterzogen haben.

Schematische Darstellung der Studie
Schematische Darstellung der Studie

Bildquelle: Ning J et al., Theranostics 2024 (CC BY 4.0)

Durch die Kombination von Multiomics mit maschinellem Lernen ist ein KI-Modell entstanden, von dem sich die Forscher viel versprechen: „In unserer Studie konnten wir damit die Veränderungen in der Prostata wesentlich genauer und zuverlässiger einschätzen als mit der herkömmlichen Biopsiemethode und dem Gleason-Score“, berichtet Kenner. So lassen sich Hochrisikopatienten, die von einer radikalen Prostatektomie profitieren, wesentlich besser identifizieren und unnötige Eingriffe bei Patienten mit geringem Risiko für eine Tumorausbreitung vermeiden.

Die Ergebnisse unserer Studie unterstreichen das Potenzial von maschinellem Lernen und Multiomics, die Diagnose und personalisierte Therapie von Prostatakrebs zu verbessern

Lukas Kenner

Die radikale Prostatektomie ist eine wichtige Säule der Prostatakrebstherapie, führt allerdings bei rund 30% der Patienten zu Harninkontinenz und bei etwa 90% zu Erektionsstörungen. Ob der Eingriff indiziert ist, wird auf Basis des Gleason-Scores entschieden, ein System zur Beurteilung der Aggressivität von Prostatakrebs. Die Bestimmung dieses Wertes erfolgt in der Regel durch die Analyse kleiner Gewebeproben, die durch eine Biopsie entnommen werden. Der Vergleich dieser Werte mit den Ergebnissen einer vollständigen Gewebeuntersuchung nach Entfernung der Prostata weisen jedoch häufig Diskrepanzen auf. „Die Ergebnisse unserer Studie unterstreichen das Potenzial von maschinellem Lernen und Multiomics, die Diagnose und personalisierte Therapie von Prostatakrebs zu verbessern“, sagt Lukas Kenner. Weitere Studien zur Überprüfung der Methode sind geplant, um die klinische Anwendung voranzutreiben.


Quelle: Medizinische Universität Wien

12.09.2024

Verwandte Artikel

Photo

News • Nicht-invasive Risikobewertung

Prostatakrebs: KI soll unnötige Biopsien vermeiden

Durch die Kombination von Risikomarkern, systematischer Befundung von MRT-Aufnahmen und KI kann das Risiko für Prostatakrebs präziser als bisher vorhergesagt werden, wie eine neue Studie zeigt.

Photo

News • Blick in die Black Box

Krebs-Diagnose per KI: Wie verlässlich ist der Algorithmus?

KI soll das Gesundheitswesen effizienter und günstiger machen. Doch wie können Mediziner sicher sein, dass die Maschine keine Fehler macht? Dieser Frage gehen Forscher der FH Dortmund nach.

Photo

News • Ethische Fragen zur KI in der psychiatrischen Praxis

Alzheimer und Depression: Diagnose vom Computer?

KI birgt enormes Potenzial bei der Diagnostik neuropsychiatrischer Erkrankungen – Forscher untersuchen die wissenschaftliche, ethische und soziale Bedeutung dieser Entwicklung.

Verwandte Produkte

Newsletter abonnieren