Das Team um Prof. Dr. Manja Krüger (links) entwickelt neue Materialien für...
Das Team um Prof. Dr. Manja Krüger (links) entwickelt neue Materialien für langlebige Implantate

Bildquelle: Jana Dünnhaupt/Uni Magdeburg

News • Materialforschung für Implantate

Künstliche Hüften, die ein Leben lang halten

Ein interdisziplinäres Forschungsteam aus Werkstoffiingenieuren sowie Biologen und Medizinstudierenden der Otto-von-Guericke-Universität Magdeburg entwickelt neue Materialien für langlebige Implantate.

Biokompatible und antibakterielle Legierungen mit speziellen biomechanischen Eigenschaften sollen künftig schädliche Wechselwirkungen der Implantate mit dem umliegenden menschlichen Gewebe und dadurch entstehende Entzündungsreaktionen beziehungsweise Infektionen verhindern. Dadurch können die Haltbarkeit und Verträglichkeit künstlicher Gelenke verlängert und der Austausch des Implantats, eine sogenannte Implantatrevision, vermieden werden. Speziell Revisionsoperationen stellen eine enorme Belastung für die Patienten dar und verursachen erhebliche Mehrkosten für das Gesundheitssystem. 

„Durch die gestiegene Lebenserwartung und anhaltende Aktivität der Zielgruppe, erhöht sich die Belastung der Gelenke enorm, was wiederum zu einem vermehrten Verschleiß führt“, erklärt die Projektleiterin Prof. Dr. Manja Krüger vom Institut für Werkstoff- und Fügetechnik der Universität Magdeburg. „Die Folge ist eine Zunahme von Implantationen künstlicher Gelenke bei Patienten und damit verbunden ein steigender Bedarf an besonders haltbaren und verträglichen Werkstoffen für diese Implantate.“ Aktuell eingesetzte Implantatwerkstoffe seien zwar prinzipiell schon von sehr hoher Qualität, aufgrund von Lockerungen, bedingt durch Abrieb und Korrosion, kann es dennoch zu postoperativen Komplikationen kommen, so die Ingenieurin weiter. Um diese Probleme zu beheben, würden für die Patienten belastende und teure Revisionsoperationen nötig. „Vor allem während der Nutzung im Organismus entstehender Abrieb und resultierende Infektionen führen häufig dazu, dass Endoprothesen, also Implantate, wieder entfernt oder ausgetauscht werden müssen.“

Kürzlich entwickelte Materialien dieser Art zeigen zum Beispiel hervorragende mechanische Eigenschaften, verbesserte Abriebfestigkeit und sowohl korrosive als auch thermische Beständigkeit, die denen von aktuellen Legierungen überlegen sind

Manja Krüger

Damit diese Revisionsoperationen in Zukunft nur noch selten nötig werden, forschen die Wissenschaftler der Universität Magdeburg in zwei Teilbereichen: Zum einen befassen sich Ingenieure des Lehrstuhls für Hochtemperaturwerkstoffe mit der Materialentwicklung, also dem Design der Legierung sowie mit den mikrostrukturellen und mechanischen Eigenschaften der Materialien und deren Herstellung. Zum anderen arbeiten Biologen und Medizin-Studierende aus der Experimentellen Orthopädie des Universitätsklinikums daran, die Verträglichkeit des neuen Werkstoffs für den Organismus zu verstehen und zu optimieren. 

„Uns interessieren dabei besonders sogenannte biokompatible Werkstoffe“, erklärt die Materialwissenschaftlerin Manja Krüger, „also im weiteren Sinne für das biologische System verträgliche Materialien.“ Biokompatibel seien beispielsweise refraktärmetallbasierte Multikomponenten-Werkstoffsysteme, so Krüger. „Diese sogenannten Hoch- und Mediumentropie-Werkstoffe ermöglichen eine große Vielfalt von Kombinationen, was zu völlig neuen Werkstoffen mit außergewöhnlichen Eigenschaften führt. Kürzlich entwickelte Materialien dieser Art zeigen zum Beispiel hervorragende mechanische Eigenschaften, verbesserte Abriebfestigkeit und sowohl korrosive als auch thermische Beständigkeit, die denen von aktuellen Legierungen überlegen sind.“ Diese Legierungen hätten gegenüber den im Moment eingesetzten silberbeschichteten Implantaten den Vorteil, dass bei ihnen noch keine Resistenzen bekannt seien. „Wir wissen, dass Bakterien im Laufe der Jahre einen Resistenzmechanismus gegen Silber entwickeln können, sodass die ursprüngliche antibakterielle Wirkung des Elements abgeschwächt wird. Das wiederum bedeutet, dass auch Silberimplantate irgendwann nicht mehr antibakteriell wirken und periprothetische Infekte, also Infektionen, die sich um eine künstliche Implantation im Körper herum entwickeln, auftreten können“, fügt die Biologin Prof. Jessica Bertrand von der Experimentellen Orthopädie des Universitätsklinikums an. 

Langfristiges Ziel der Forscher ist es, ein passendes Legierungssystem als neuartigen Implantatwerkstoff zu identifizieren, zu entwickeln und im Labor zu erproben. „Konkret heißt das: Die zugrundeliegenden materialwissenschaftlichen Zusammenhänge sind geklärt, die mechanischen Eigenschaften sind bekannt und übertreffen die branchenüblichen Anforderungen aktuell im Einsatz befindlicher Werkstoffe für Endoprothesen beziehungsweise sind entsprechend patientenspezifisch einstellbar und für die Biokompatibilität beziehungsweise die antibakterielle Wirkung des Systems ist der Nachweis erbracht“, so Prof. Krüger. 

Das Forschungsteam besteht aus Prof. Dr. Manja Krüger, Maximilian Regenberg, Dr. Georg Hasemann und Dr. Janett Schmelzer von der Fakultät für Maschinenbau sowie Prof. Dr. Jessica Bertrand, Caroline Grimmer und Munira Kalimov von der Experimentellen Orthopädie. Das Team wurde für seine interdisziplinäre Forschung mit dem zweiten Platz in der Kategorie „Innovativste Vorhaben der Grundlagenforschung“ des Hugo-Junkers-Preises 2023 ausgezeichnet. 


Quelle: Otto-von-Guericke-Universität Magdeburg

02.09.2023

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • 'Mikro-Massage' im Bein

Künstliche Muskeln für bessere Heilung von Knochenbrüchen

Ingenieurwissenschaftler, Mediziner und Informatiker stellen auf der Hannover Messe den Prototypen eines smarten Implantats vor, das den Heilungsprozess nach Frakturen unterstützen soll.

Photo

News • Anpassung des Gehirns an CI-Hörprothese

Hören mit Cochlea-Implantat: Auf dem Weg zu genauerer Diagnostik

Ein Cochlea-Implantat verbessert das Sprachverständnis – aber nicht bei jedem gleichermaßen schnell und gut. Forscher untersuchen nun, wie sich das Gehirn an das elektrische Hören anpasst.

Photo

News • Elektrische Stimulation des Hörnervs

Forschung für die nächste Generation von Cochlea-Implantaten

Ein Kooperationsprojekt zwischen der TU München und der Medizinischen Universität Innsbruck soll Cochlea-Implantaten einen Entwicklungsschub verschaffen.

Verwandte Produkte

Newsletter abonnieren