Die Forscher der Universität Leipzig fanden in Brust- und...
Die Forscher der Universität Leipzig fanden in Brust- und Gebärmutterhalstumoren flüssige und feste Regionen. Die flüssigen Regionen erkennt man an länglichen Zellen, die sich durch das dichte Tumorgewebe quetschen.

Foto: Universität Leipzig/Steffen Grosser

Tumor-Physik

Krebszellen kommen als 'Gestaltwandler' ans Ziel

Wissenschaftlern der Universität Leipzig ist in Zusammenarbeit mit Kollegen aus Deutschland und den USA ein Durchbruch in der Forschung zur Verbreitung von Krebszellen gelungen.

Die Biophysiker um Prof. Dr. Josef Alfons Käs, Steffen Grosser und Jürgen Lippoldt konnten in Experimenten erstmals nachweisen, wie sich Zellen verformen, um sich in dichten Tumorgeweben zu bewegen und sich zwischen ihren Nachbarzellen durchzuquetschen. Die Forscher stellten fest, dass bewegliche Zellen gemeinsam das Tumorgewebe verflüssigen. Käs hat das Forschungsprojekt in Kooperation mit Prof. Dr. Lisa Manning von der Universität Syracuse (USA) und Prof. Dr. Bahriye Aktas vom Universitätsklinikum Leipzig geleitet. Sie haben ihre Ergebnisse jetzt im Fachjournal „Physical Review X“ veröffentlicht.

cancer cell
Aktin- und DNA-Färbung verraten die Struktur von 3D-Tumorclustern. Zellformen in Krebstumoren zeigen an, ob die Zellen beweglich sind.

Foto: Universität Leipzig/Steffen Grosser

„Diese ersten Beobachtungen eines Phasenübergangs bei menschlichen Tumoren verändern unsere grundlegenden Konzepte der Tumorprogression und könnten die Krebsdiagnose und -therapie verbessern“, sagt Käs, der sich seit Jahren mit den physikalischen Eigenschaften von Krebszellen beschäftigt. Die Forschungen hätten gezeigt, dass menschliche Tumoren feste und flüssige Zellcluster enthalten, was einen Durchbruch beim Verständnis der Tumormechanik darstellt. Die Resultate bildeten die Grundlage für das erste Verfahren, mit dem sich metastasierende Krebszellen bereits im Tumor nachweisen lassen.

In Tumorproben von Patienten der Uniklinik fanden die Wissenschaftler Regionen mit beweglichen Zellen sowie stabile, feststoffartige Regionen ohne Zellbewegung. Aus physikalischer Sicht sollten sich Zellen nicht in der dichten Tumormasse bewegen können – Tumore sind so dicht mit Zellen überfüllt, dass in jedem klassischen Material die Bewegung angehalten werden würde. Die Forscher entwickelten daher einen neuen Ansatz in der Lebendmikroskopie von Tumoren, indem sie menschliche Tumorproben direkt nach der Operation fluoreszent färbten und so Zellbewegungen live beobachten konnten. So fanden sie heraus, dass diese Zellbewegung entgegen allen bisherigen Erkenntnissen doch stattfindet und mit starken Kerndeformationen verbunden ist. Sie beobachteten, wie sich Zellen und ihre Kerne buchstäblich durch das Gewebe quetschen, indem sie sich stark deformieren.

portrait of Josef A. Käs
Prof. Dr. Josef A. Käs

Foto: Universität Leipzig, Swen Reichhold

„Zellen in biologischen Geweben verhalten sich ähnlich wie Menschen in einer Bar. Bei geringen Dichten können sie sich frei bewegen. Wenn es jedoch sehr voll ist, wird jede Bewegung schwierig. Aber selbst in einer überfüllten Bar können Sie sich immer noch durchdrücken, wenn Sie sich seitwärts drehen. Genau diesen Effekt sehen wir in Tumorgeweben“, erklärt Käs. Die Forscher glauben, dass dieser Flüssigkeitsübergang erklärt, wie sich Zellen in einem Tumor bewegen und vermehren können, was schließlich zu Metastasen führt. Die flüssigen Gewebe waren mit länglichen, deformierten Zellen und Kernen angereichert. Statische Bilder von länglichen Zell- und Kernformen könnten somit als Fingerabdruck für die metastatische Aggressivität eines Tumors dienen. 

„Dies sind spektakuläre Ergebnisse aus dem Bereich der Krebs-Physik. Wir müssen jetzt untersuchen, ob die flüssigen Regionen die Tumoraggressivität vorhersagen können. Hier haben wir einen Krebs-Marker gefunden, der aktive, bewegliche Regionen anzeigt und der auf einem einfachen physikalischen Mechanismus beruht “, sagt Steffen Grosser. Derzeit leitet Professor Käs eine klinische Studie ein, um das Potenzial der Zell- und Kernform als neuen Tumormarker zu untersuchen, mit dem Patienten viel gezielter als bisher untersucht und behandelt werden könnten.


Quelle: Universität Leipzig

19.02.2021

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Krebsforschung

Glioblastom: Bislang unbekannter Tumortreiber entdeckt

Es kommt nicht oft vor, dass Forscher noch einen neuen Zelltyp entdecken. Einem Team um Prof. Dr. Rainer Glaß von der Neurochirurgischen Klinik und Poliklinik des LMU Klinikums Großhadern ist dies…

Photo

Förderung für Forschungsprojekt

Wenn Tumorzellen den Halt verlieren

Metastasen sind die häufigste Todesursache bei Krebspatienten. Die Streuung von Tumorzellen aus dem Primärtumor in andere Organe hängt unter anderem von der Verbindung zwischen den Tumorzellen und…

Photo

Tumorzellen unter der Lupe

Aggressiver Krebs: neuer Mechanismus entdeckt

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem internationalen Forscherteam in…

Verwandte Produkte

FUJIFILM Wako - Autokit CH50 Assay

Clinical Chemistry

FUJIFILM Wako - Autokit CH50 Assay

Wako Chemicals GmbH
Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Blood Cell Couner

Mindray – BC-6200 / 6000 Auto Hematology Analyzer

Shenzhen Mindray Bio-Medical Electronics Co., Ltd
Sarstedt – Cell Culture Products

Specialties

Sarstedt – Cell Culture Products

SARSTEDT AG & CO. KG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH
Newsletter abonnieren