MRSA

Hoffnung im Kampf gegen multiresistente Keime

Forscher der Universitäten Stuttgart und Tübingen weisen Wirksamkeit neuartiger Antibiotika nach

Quelle: P. Kaiser. Kolorierung: A. Schnartendorff/RKI

Erst im Oktober 2017 schlug die Weltgesundheitsorganisation WHO Alarm, weil immer weniger wirksame Antibiotika gegen multiresistente Keime zur Verfügung stehen. Eine Gruppe um Prof. Bernd Plietker (Institut für Organische Chemie, Universität Stuttgart) beschrieb nun in einer gemeinsamen Publikation mit Forschenden um Prof. Friedrich Götz (Universität Tübingen) grundlegend neuartige Antibiotika-Strukturen, die im Kampf gegen die oft tödlichen Krankheitserreger einen signifikanten Beitrag leisten könnten.

Photo
Staphylococcus aureus. Ultradünnschnitt im Transmissions-Elektronenmikroskop (TEM). Primärvergrößerung x 68 000.
Quelle: P. Kaiser. Kolorierung: A. Schnartendorff/RKI

Weltweit wird eine zunehmende Zahl von Keimen registriert, die sich einer Behandlung mit den verfügbaren Antibiotika entziehen. Die WHO hat aus diesem Grunde die Entwicklung neuer Antibiotika gegen Methicilin-resistente Staphylococcus aureus (MRSA) priorisiert. Die momentan gängigen Reserveantibiotika wie etwa die Medikamente „Vancomycin“ oder „Teicoplanin“ basieren häufig auf komplexen, zyklischen Peptiden und hemmen unter anderem die Zellwandbiosynthese, also den Aufbau der Bakterienzellwand sogenannter Gram-positiver Bakterien. Diese Bakteriengruppe unterscheidet sich von Gram-negativen Bakterien dadurch, dass ihre Zellwand aus einem Peptidglycon und nicht aus einer Lipidschicht besteht. Allerdings steigt auch die Zahl der Berichte über Vancomycin-resistente Staphylococcus aureus-Stämme (VRSA), weshalb neue Strategien und Strukturen zur Bekämpfung Gram-positiver Bakterien dringend gebraucht werden.

Die Wissenschaftler der Universitäten Stuttgart und Tübingen zeigten nun, dass neuartige, nicht-natürliche Derivate der aus Orchideen der Spezies Clusia rosea isolierten Naturstoffklasse der polyzkylischen polyprenylierten Acylphloroglucine (PPAP) potente Antibiotika gegen multiresistente Krankheitserreger sind. Die nicht-natürlichen PPAPs weisen eine Aktivität wie die genannten Reserveantibiotika auf, behindern aber nicht die Zellwandbiosynthese und sind, ausgehend von einer sehr gut verfügbaren Grundchemikalie, in nur wenigen Schritten auch in größeren Mengen verfügbar.

Sehr gute bis exzellente Aktivitäten gegen sieben Problemstämme und die sehr geringe Toxizität gegenüber menschlichen Zellen machen diese Verbindungen zu ausgezeichneten Startpunkten für die Entwicklung weiterer Antibiotika. Die Forscher hoffen darauf, dass die künftigen Medikamente bei einem Großteil der im Krankenhausbereich problematischen Entzündungskrankheiten wie etwa Lungen- oder Hirnhautentzündungen Hilfe bringen. Die Arbeit wurde in dem renommierten Journal "Angewandte Chemie" veröffentlicht. Sie baut im Wesentlichen auf einer Arbeit auf, die 2011 im Journal „Nature Chemistry veröffentlicht wurde.


Quelle: Universität Stuttgart

08.12.2017

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

Multiresistente Erreger

Neue Antibiotika-Klasse zeigt großes Potenzial gegen MRSA

Die auch als "Krankenhauskeime" bekannten multiresistenten Bakterien stehen zunehmend im Fokus der öffentlichen Aufmerksamkeit. In Kliniken stellen sie eine große Gefahr dar, vor allem…

Photo

Mikrobialer Widerstand

Resistente Erreger auch ohne Antibiotika möglich

Bakterien sind immer häufiger resistent gegen die gängigen Antibiotika. Vermittelt werden die Resistenzen häufig durch Resistenzgene, welche von einer Bakterienpopulation zur nächsten springen…

Photo

Nach dem Vorbild der Natur

Selektive Antibiotika gegen Infektions-Erreger

Mit zunehmender Gefahr durch multiresistente Keime werden neue Antibiotika dringender denn je benötigt. Allerdings unterscheiden Antibiotika nicht zwischen Krankheitserregern und nützlichen…

Verwandte Produkte

Eppendorf – Mastercycler nexus X2

Research Use Only (RUO)

Eppendorf – Mastercycler nexus X2

Eppendorf AG
Sarstedt – Low DNA Binding Micro Tubes

Research Use Only (RUO)

Sarstedt – Low DNA Binding Micro Tubes

SARSTEDT AG & CO. KG
Shimadzu – CLAM-2030

Research Use Only (RUO)

Shimadzu – CLAM-2030

Shimadzu Europa GmbH