Infarkt oder Broken Heart? KI erkennt den Unterschied

Bildquelle: Adobe Stock/Siarhei 

News • Ähnliche Symptome, unterschiedliche Therapien

Infarkt oder 'Broken Heart'? KI erkennt den Unterschied

Die Symptome sind zum Verwechseln ähnlich: Der akute Herzinfarkt und das Broken-Heart-Syndrom Takotsubo. Forschende des Universitätsspital Zürich (USZ) konnten in einer internationalen Studie zeigen, dass Künstliche Intelligenz erfahrene Kardiologen bei der Analyse von Herz-Ultraschall-Daten übertreffen kann. Der Weg zum klinischen Einsatz ist trotzdem noch weit.

Die Studie wurde im Jama Cardiology veröffentlicht

Bei der Takotsubo-Kardiomyopathie handelt es sich um eine akute Pumpfunktionsstörung des Herzens, welche mehrheitlich Frauen betrifft und hauptsächlich nach emotionalen oder physischen Stressereignissen auftritt. Die Erkrankung ähnelt in der akuten Phase einem Herzinfarkt. Obschon die Unterscheidung für die weitere adäquate Behandlung zentral ist, fehlen bis heute klare Kriterien auf Basis einer Herz-Ultraschall-Untersuchung. 

Die Forscher gingen in diesem Kooperationsprojekt mit der ETH Zürich der Frage nach, ob maschinelles Lernen bei der Unterscheidung der beiden kardiovaskulären Erkrankungen helfen könnte. Als Basis für ihre Studie nutzten sie Daten aus dem internationalen Takotsubo-Register einerseits und dem Zürcher Register für Akute Koronare Herzkrankheiten anderseits. Insgesamt flossen die Herz-Ultraschall Untersuchungen von 224 Patienten mit einem akuten Myokardinfarkt und 224 Patienten mit einem Takotsubo-Syndrom ein.

Stehen künftig größere Datensätze zur Verfügung, könnten die Vorhersagen mittels Deep Learning noch erheblich verbessert werden und weitere Einblicke in die Dynamik der normalen und krankhaften Herzfunktion gewähren

Christian Templin

In einem ersten Schritt wurde ein Deep-Learning-Modell entwickelt. Für das Training wurden die Daten von insgesamt 228 Patienten verwendet. Das Ziel bei solchen Verfahren ist es, dass die künstliche Intelligenz in den unstrukturierten Rohdaten Muster erkennt und sich diese Muster mit der Menge der Datensätze laufend präzisieren. KI ist auf diese Weise unter Umständen in der Lage, Bilder zuzuordnen oder Unterscheidungen vorzunehmen, die der menschlichen Aufmerksamkeit entgehen. Im nächsten Schritt wurde der so entwickelte Algorithmus für die Analyse der weiteren 200 Datensätze eingesetzt. Um Genauigkeit und Treffsicherheit zu vergleichen, bewerteten vier erfahrene Kardiologen ihrerseits dieselben 200 Datensätze. Die Auswertung der Ergebnisse zeigte, dass die vollautomatische Analyse mittels künstlicher Intelligenz den Kardiologen überlegen war. 

Bevor eine Nutzung im klinischen Alltag möglich ist, müssen allerdings weitere Studien folgen. Nicht zuletzt deshalb, weil in diesem Fall die zugrundeliegenden Daten auf zwei Krankheitsbilder und eine beschränkte Anzahl Datensätze limitiert waren. "Dennoch konnten wir mit dieser Studie das Potenzial von KI zeigen", erklärt Christian Templin, Kardiologe am USZ und Letztautor der Studie. "Stehen künftig größere Datensätze zur Verfügung, könnten die Vorhersagen mittels Deep Learning noch erheblich verbessert werden und weitere Einblicke in die Dynamik der normalen und krankhaften Herzfunktion gewähren". Angesichts stets zunehmender Datenmengen in der medizinischen Diagnostik steigt auch der Bedarf nach effizienter Verarbeitung und Analyse. Der Einsatz von KI steht erst am Anfang. 


Quelle: Universitätsspital Zürich

13.04.2022

Mehr aktuelle Beiträge lesen

Verwandte Artikel

Photo

News • Kardiologie

Molekulare Infarktkarte des Herzens erstellt

Wissenschaftlerinnen haben eine „Landkarte des Herzinfarktes“ erstellt. Mittels künstlicher Intelligenz konnten sie Zellzustände identifizieren, die offenbar charakteristisch für die kardialen…

Photo

News • Angina pectoris-Erkennung

KI in der Notaufnahme soll Herzinfarkt-Diagnose verbessern

Wenn Patienten mit einem Engegefühl in der Brust ins Krankenhaus kommen, ist es überlebenswichtig, so schnell wie möglich festzustellen, ob ein Herzinfarkt vorliegt oder nicht. Wissenschaftler des…

Photo

News • Mensch und Maschine

KI erkennt Herzinfarkt im EKG zuverlässiger als Kardiologen

Eine künstliche Intelligenz (KI), die auf das Auslesen von Elektrokardiogrammen trainiert wurde, erzielt eine höhere Trefferquote bei der Erkennung von Herzinfarkten als ein menschlicher Facharzt.…

Verwandte Produkte

Agfa HealthCare – Rubee for AI

Artificial Intelligence

Agfa HealthCare – Rubee for AI

Agfa HealthCare
Canon – Advanced intelligent Clear-IQ Engine for MR

Artificial Intelligence

Canon – Advanced intelligent Clear-IQ Engine for MR

Canon Medical Systems Europe B.V.
Canon – Alphenix Biplane High Definition Detector

Bi-Plane

Canon – Alphenix Biplane High Definition Detector

Canon Medical Systems Europe B.V.
Canon – Alphenix Core

Single Plane

Canon – Alphenix Core

Canon Medical Systems Europe B.V.
Newsletter abonnieren